Quick NS-3 Tutorial

Serhat Arslan, Jenya Pergament

Network Simulator 3

- A <u>discrete-event network simulator</u> for Internet systems, targeted primarily for research and educational use.
 - Uses virtual time to simulate events
- An open source project actively supported by The University of Washington NS-3 Consortium
- Advantages:
 - Inexpensive solution to assess network/protocol performance.
 - Easy monitoring of all sorts of details, ie cwnd
 - Custom topologies can be easily defined to simulate large-scale networks
- Disadvantages:
 - Can not be parallelized
 - May ignore some processing steps/delays

NS-3 Documentation

NS-3 Doxygen:

https://www.nsnam.org/doxygen/

- Search for every module / API / object
- Can also look into the source code

Building NS-3

git clone https://github.com/stanford-cs244/ns-3-dev-git.git

Building NS3

- ./waf configure --build-profile=debug --enable-examples --enable-tests
- ./waf (This will take some time to compile)

Testing NS3

./test.py (takes long time)

Running a Script

• ./waf --run hello-simulator

Detailed Tutorial: https://www.nsnam.org/docs/tutorial/html/

Running Scripts with Arguments

Program Arguments

• ./waf --run '<ns3-program> --arg1=value1 --arg2=value2 ...'

Debugging

• ./waf --run=hello-simulator --command-template="gdb %s --args <args>"

Working Directory

• ./waf --cwd=...

- Node (NodeContainer)
 - Basic computing device, end-host
 - Add applications, protocol stacks and peripheral cards with drivers to make it work

- Node (NodeContainer)
 - Basic computing device, end-host
 - Add applications, protocol stacks and peripheral cards with drivers to make it work
- Channel (Eg. PointToPointHelper)
 - Basic communication subnetwork
 - Example types: CsmaChannel,
 PointToPointChannel and WifiChannel

- Node (NodeContainer)
 - Basic computing device, end-host
 - Add applications, protocol stacks and peripheral cards with drivers to make it work
- Channel (Eg. PointToPointHelper)
 - Basic communication subnetwork
 - Example types: CsmaChannel,
 PointToPointChannel and WifiChannel
- Net Device (NetDeviceContainer)
 - NIC that is "installed" in a Node
 - Handles L2 networking

- Node (NodeContainer)
 - Basic computing device, end-host
 - Add applications, protocol stacks and peripheral cards with drivers to make it work
- Channel (Eg. PointToPointHelper)
 - Basic communication subnetwork
 - Example types: CsmaChannel,
 PointToPointChannel and WifiChannel
- Net Device (NetDeviceContainer)
 - NIC that is "installed" in a Node
 - Handles L2 networking

- Node (NodeContainer)
 - Basic computing device, end-host
 - Add applications, protocol stacks and peripheral cards with drivers to make it work
- Channel (Eg. PointToPointHelper)
 - Basic communication subnetwork
 - Example types: CsmaChannel,
 PointToPointChannel and WifiChannel
- Net Device (NetDeviceContainer)
 - NIC that is "installed" in a Node
 - Handles L2 networking
- Application (ApplicationContainer)
 - Sends and receives packets

Things to Know

- Creating Your Own Model
 - https://www.nsnam.org/docs/manual/html/new-models.html
- Creating Your Own Module
 - https://www.nsnam.org/docs/manual/html/new-modules.html
- NS-3 Way of Logging
 - https://www.nsnam.org/docs/manual/html/logging.html

Starter Code Overview

Grading Rubric

- 3 points: Producing working code that generates the graphs
 - (-1) Some parameters are missing
 - (-2) Some functions are empty
- 5 points: Answering the questions
 - (-1) for each incorrect answer
- 1 point: Producing correct graphs
- 1 point: Design and code quality
 - (-0.5) for each Inconsistent syntax / Hardcoded parameters /
 Un-commented Non-trivial Complex Logic (max -1)

Good luck!

Final submission due Tuesday, May 3 2022, 11:59 pm PT.