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ABSTRACT
Network performance anomalies (NPAs), e.g. long-tailed latency,
bandwidth decline, etc., are increasingly crucial to cloud providers
as applications are getting more sensitive to performance. The fun-
damental difficulty to quickly mitigate NPAs lies in the limitations
of state-of-the-art network monitoring solutions — coarse-grained
counters, active probing, or packet telemetry either cannot provide
enough insights on flows or incur too much overhead. This paper
presents NetSeer, a flow event telemetry (FET) monitor which
aims to discover and record all performance-critical data plane
events, e.g. packet drops, congestion, path change, and packet pause.
NetSeer is efficiently realized on the programmable data plane. It
has a high coverage on flow events including inter-switch packet
drop/corruption which is critical but also challenging to retrieve the
original flow information, with novel intra- and inter-switch event
detection algorithms running on data plane; NetSeer also achieves
high scalability and accuracywith innovative designs of event aggre-
gation, information compression, and message batching that mainly
run on data plane, using switch CPU as complement. NetSeer has
been implemented on commodity programmable switches and NICs.
With real case studies and extensive experiments, we show NetSeer
can reduce NPA mitigation time by 61%–99% with only 0.01% over-
head of monitoring traffic.
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1 INTRODUCTION
Cloud providers own networks that can comprise thousands of

switches and hundreds of thousands of links. In such large and
complex networks, bugs and failures in configuration, software,
and hardware are inevitable. Therefore, applications often suffer
from unceasing network performance anomalies (NPAs), such as
bandwidth decline, long-tailed latency, bandwidth/latency jitters,
and so forth.

NPA is increasingly critical to cloud providers as applications be-
come more sensitive to performance. On the one hand, the rapidly
ascending network speed remarkably raises the expectation of net-
work performance [15, 34, 40, 71]. For instance, after block storage
migrates to RDMA from kernel TCP, the expected average end-to-
end network latency inside data centers becomes 20µs instead of
2ms . As a result, an occasional 200µs in-network latency becomes
unacceptable, even though it is negligible for kernel TCP, because
it makes the user experience unpredictable and significantly slows
down batch I/O. On the other hand, interactive applications are
quickly emerging and have become a major driving force of the
cloud business growth. For instance, applications like algorithmic
stock trading, cloud gaming, and VR/AR (virtual reality/augmented
reality) are highly profitable, while they also have strong require-
ments, e.g. 99.9% SLA (service level agreement), on the stability and
sufficiency of bandwidth and latency [25]. Failing to deliver the
SLAs can result in severe customer, reputation and revenue loss.

However, quickly mitigating NPAs is extremely challenging, be-
cause it has an exceedingly high standard on the coverage, speed,
and accuracy of network monitoring. In most NPA cases, the bot-
tleneck to mitigate NPAs is the time spent on locating the causes of
NPAs (§2.2). To quickly locate the causes, cloud providers must be
able to instantly discover all performance-critical events that hap-
pen on application traffic, e.g. packet drops, congestion, etc., which
are direct triggers of NPAs. Furthermore, the granularity of these
events should be at flow-level rather than the traditional interface-
or device-level, because precise information about where and how
the victim application’s traffic gets disturbed can significantly ac-
celerate the cause location (§5.1). Therefore, cloud providers must
watch the data plane for flow events and make the event detection
as responsive as possible.

Unfortunately, existing network monitoring methodologies are
far from satisfying the preceding requirements for troubleshooting
NPAs, since they are not designed for this purpose. For instance,
off-the-shelf switches merely provide counters that are aggregated
into per-interface, per-device, or per-sampled-flow granularity [9,
11, 54]; Probe-based monitoring systems [19, 62] only probe the
network with time granularity of 10+ seconds and cannot directly
detect the events of original application traffic. As a result, cloud
providers usually have to combine coarse-grained information from
multiple sources and guess the causes, which takes a long time even
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for experienced operators (§2.1). Recently, as data plane becomes
more configurable, packet telemetry (PT), such as ERSPAN [72] and
INT (in-band network telemetry) [30], are proposed for obtaining
fine-grained data plane information. Nonetheless, PT solutions are
faced with essential trade-offs between granularity and cost — They
either compromise cost and scalability by processing all packets
(with truncated payload) [21, 51] or sacrifice granularity by packet
sampling [49, 54, 65, 72] or aggregation [32, 38, 69].

The fundamental limitation of existing network monitoring so-
lutions for troubleshooting NPAs lies in the rigidity of the tradi-
tional data plane – off-the-shelf switching ASICs can only provide
simplistic functions to compute fixed and aggregated counters or
mechanically mirror packets to the management plane. Hence, de-
spite the data plane is the origin of flow events, it has to rely on the
remote management plane to perform sophisticated monitoring
logics, e.g. event detection, data cleaning, and compression, etc.,
resulting in huge traffic transmission and computation overhead.

One promising way to achieve both fine-granularity and cost-
efficiency is performing monitoring logics directly in the origin –
the switch data plane itself. Fortunately, recent advances on the
commodity programmable data plane (PDP) have provided us a
new foundation to realize this vision.

This paper presents NetSeer, a flow event telemetry (FET) based
network monitor which continuously and simultaneously watches
all individual flows and comprehensively detects flow events, includ-
ing packet drops, congestion, path change, and packet pause, with
moderate cost. The key idea of NetSeer is to detect flow events and
compress event data entirely inside PDP before uploading data to
the management plane, so it can significantly reduce the monitoring
overhead as well as preserving the fine-granularity of data.

However, realizing a FET system is challenging in three major
aspects: high coverage of flow events, high scalability with network
sizes, and high data accuracy with extremely low false-negative and
false-positive rates. To address these challenges, NetSeer proposes
the following innovative designs.
Coverage: NetSeer traces the entire packet processing logic in
PDP to comprehensively detect intra-switch flow events. Never-
theless, detecting inter-switch packet drop/corruption events is
challenging, since we have no visibility into links, and cannot easily
retrieve original flow information from dropped/corrupted packets.
NetSeer leverages the programmability at both sides of a link to
collaboratively discover inter-switch drop events and recover the
flow information of dropped or corrupted packets (§3.3).
Scalability: NetSeer achieves high scalability with three designs.
First, NetSeer fully utilizes data plane programmability to precisely
identify packets that encounter events, aggregate packets experi-
encing the same flow-level event, and losslessly compress the flow
events, which minimizes the produced event data volume (§3.4).
Second, NetSeer batches small-sized event messages into large
packets with a novel in-data-plane design of circular-packet-driven
event collection to reduce transmission and processing overhead
in switches (§3.5). Finally, NetSeer performs FET in a distributed
manner, making it linearly scalable with network size.
Accuracy: NetSeer ensures zero false negatives in event genera-
tion and uses switch CPU with ASIC offloading to discover and
eliminate false positives with small overhead (§3.6).

NetSeer has been fully implementedwith Barefoot Tofino switches
and Netronome SmartNICs. Studies on real NPA cases and extensive
testbed-based evaluations show that NetSeer can reduce the cause
location time of NPAs by 61%-99%, incurring only 0.01% traffic over-
head and around 20% hardware resource occupation. NetSeer has
sufficient capacity to fully cover all targeted flow events unless PDP
itself is malfunctioning or some extreme cases happen, e.g. >1,000
consecutive packet corruptions or >40Gbps congestion drops.

2 BACKGROUND AND MOTIVATION
In today’s clouds, NPAs can last for hours or longer and severely

affect application performance. The ability of NPA troubleshooting
is vital for cloud providers. In this section, we use our network
operation experience to concretely demonstrate the current status
of NPAs in production and motivate our proposal. Alibaba is one of
the largest global cloud providers, offering tens of diverse services
to billions of customers with data centers across 21 areas around the
globe. Regarding its physical network,Alibaba has a comprehensive
network monitoring system, which contains not only well-known
techniques, e.g. a PingMesh-like probing system, Syslog and counter
collectors, but also a traffic generator and a packet telemetry system
based on ERSPAN. Even so, we still encounter hundreds of NPAs
yearly and suffer from long recovery time.

2.1 Impacts of NPAs on Cloud Networks
There are generally two types of network faults: connectivity

loss and NPA. The former means applications lose the network
connectivity for minutes or even longer, and the latter means ap-
plications suffer from less violent performance anomalies, such as
bandwidth drop, long-tailed latency, or performance jitters. Rela-
tively speaking, NPA is easier to happen and harder to mitigate
than connectivity loss. This is because NPA usually happens in a
shorter time-scale with randomness, leaving minor fingerprints in
networks. The proportion of NPAs in Alibaba’s network faults kept
increasing in the last three years and reached 80% in 2019.

To understandwhyNPA is a significant concern of cloud providers,
we selected two representative cases to show how an ordinary ticket
from customers eventually turned into influential incidents because
of the long mitigation time.
Case-1: Is the cause in the network or not? A customer re-
ported unexpected latency glitches (100s of ms, sometimes above
1s) between a virtual machine (VM) and cloud storage service. To
diagnose this problem, operators first checked SNMP [9] data and
found that minute-level switch throughput and buffer usage re-
mained low; Secondly, a minute-level probing system similar to
Pingmesh [19] did not discover latency anomalies; Finally, oper-
ators used the header of customer request packets to construct
TCP pings and sent them as probes [72]. Nevertheless, the latency
appeared normal. Even though network monitoring systems did
not discover any network faults, operators still could not claim
with confidence that the network was not responsible, since there
might exist fine timescale events such as microbursts that were
missed. The search for the cause continued until the storage team
discovered disk I/O blocking when processing bursty requests, pro-
viding a side proof for “network innocence”. The troubleshooting
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(c) Heatmap for reasons and locations of network faults
Figure 1: NPA statistics in production from O(100) real

service tickets that record the entire NPA troubleshooting
details in Alibaba’s network (2018-2019).

lasted for about 2 days because of the back-and-forth suspects on
networks and applications.
Case-2: Is the lossy switch causing the NPA? One customer
reported occasional packet drop between two VMs. Network op-
erators first retrieved switch drop statistics. Data showed that the
ToR switch of one VM indeed dropped packets during that period.
However, operators were not sure whether these dropped packets
included customer’s packets. Thus, operators tried to reproduce the
packet drop. Operators sent a fixed number of imitated customer
packets between the two VMs and counted the number of received
packets in each switch alongside the path [72]. By repeating the
above operation multiple times, operators successfully captured a
packet drop event at the ToR. Meanwhile, SNMP showed that the
ToR downlink port indeed dropped packets. Combined with other
information, operators suspected that customer packet drops were
likely to be caused by occasional bursty incasts. The entire process
took over an hour.

The above two cases are relatively easy to handle since their
NPAs last persistently. Some NPAs happen occasionally in produc-
tion and cannot be reproduced in testing environments, and they
disturb applications for days or even weeks before the eventual
mitigation, causing significant revenue loss.

2.2 Challenges of NPA Cause Location
From the two cases above, we can see that operators spend lots

of time locating the causes of NPAs. In fact, most of the efforts
for NPA mitigation are devoted to NPA cause location according
to general statistics shown in Figure 1(a). This figure shows a
realistic distribution of the NPA mitigation time of Alibaba with
state-of-the-art network monitoring systems, including counters,
Syslog, probings, and PT (ERSPAN). About half of the NPAs took
more than 10 minutes to recover, and the longest recovery time for
one NPA reached above 12 hours, which is unsatisfactory to cloud
providers. It also illustrates that the cause location is usually the
bottleneck that costs 90% time or more in most cases. In contrast,
the actual recovery operations after finding the location of causes
are typically fast, because cloud networks and applications often
have enough redundancy.

From the two cases above, we can also see that the challenges of
NPA cause location stem from the variety of the locations of NPA
causes. Firstly, applications usually consider NPAs as the conse-
quences of network faults. But in reality, only a fraction of NPAs
are caused by networks. Figure 1(b) shows the fractions of different
sources of causes for three types of NPAs. Besides networks, prob-
lems in server software/hardware, resource provisioning, power
supply, and security attacks can also be the reasons for NPAs. As
a result, the diagnosis of NPAs often starts from the network but
ping-pongs between applications, software stacks, and other poten-
tial issues, wasting tremendous time (e.g. Case-1). Secondly, even
if the network is indeed causing a given NPA, there are numerous
potential root reasons and locations across the whole cloud net-
work that can lead to the NPA, as shown in Figure 1(c). Therefore,
operators heavily rely on the coverage and accuracy of network
monitoring systems to locate the causes (e.g. Case-2).

Given the huge variety of cause reasons and locations, operators
always struggle with the coarse time and aggregation granularity
of network monitors. For instance, in Case-1, what made opera-
tors hesitate to make a judgment of “network innocence” was the
sub-second congestion events that could be missed; For another
example, in Case-2, the interface based drop counters could not di-
rectly indicate whether and where the victim application’s packets
were dropped. Therefore, operators always try to combine multiple
coarse-grained counters to infer where the traffic of the victim appli-
cation gets disturbed, which wastes a lot of time and is error-prone.
Besides, the reason why operators did not use ERSPAN in both
cases was the worry that fine-grained traffic mirroring could intro-
duce congestion and packet drops, which would further confuse
the troubleshooting process.

Therefore, a powerful network monitoring system is required by
network operators for troubleshooting NPAs. This monitor should
have the ability to fully catch sub-second level events in the data
plane and distinguish among all individual flows.

2.3 Our Proposal: Flow Event Telemetry
Data plane events include packet drop, congestion, path change,

and PFC pause on lossless fabrics, which are the direct reasons for
NPAs experienced by applications. Our goal is to design a network
monitoring system which can provide comprehensive and accurate
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flow-level data plane event information, which we call “flow event
telemetry (FET)”.

It is non-trivial to extract all flow events from the raw traffic.
The fundamental reason why traditional counters and PT cannot
achieve our goal is that their data plane cannot directly hold the
algorithms and data structures for FET. Traditional fixed-function
data plane only provides aggregated counters and loses flow level
details; PT has to rely on management plane to perform FET logic,
resulting in huge resource overhead (31% bandwidth overhead [21]).

With the development of PDP, we see the opportunity of com-
pletely realizing FET inside the switch data plane. We believe this
choice is rational because of two unique advantages to realize FET
on PDP. First, directly running FET in the data plane can signif-
icantly reduce monitoring traffic volume (0.01% bandwidth over-
head) and data processing overhead. Second, different from CPU,
ASICs in PDP can keep line rate when running customized packet
processing logics, so the performance impact of FET can be mini-
mized. Therefore, NetSeer is built to realize this vision.

NetSeer is designed as an always-on monitoring system that
comprehensively captures events of all network traffic. Only in
this way can network operators have full confidence in network
exoneration or fast NPA location. To make such comprehensiveness
practical, we propose multiple novel designs to minimize the trans-
mission and processing overhead of monitoring traffic. Considering
the limited processing capacity of switch CPU, most of our opti-
mizations are performed in the switch data plane. With stronger
switch CPU, we can further reduce the overhead by implementing
data encoding and compression algorithms. Finally, a partial de-
ployment of NetSeer to monitor flows of specific applications can
also enable fine-grained network monitoring for these applications.

3 DESIGN
This section first outlines the challenges and design principles of

NetSeer. It then elaborates NetSeer’s concrete design to achieve
full event coverage, good scalability, and high accuracy, and dis-
cusses the preconditions of the above features.

3.1 Overview
There are mainly four types of flow events that are the direct

causes of NPAs in the network data plane:
• Packet drop: It usually results in timeout, retransmission, and
slowing down at senders. It is a major cause of NPAs. There are
numerous reasons for packet drops. A packet drop that causes
NPA can take hours to locate (Figure 3);
• Packet queuing: It can delay the transmission and arrival of pack-
ets, and it is usually caused by congestion;
• Packet out-of-order: It leads to deep buffering or triggers negative
acknowledgments (NAKs) at receivers, and it is often induced by
flow path changes;
• Packet pause: It postpones switches from forwarding packets in a
priority queue, and it is brought by priority flow control (PFC [1])
pauses in lossless Ethernet;
Therefore, the crux to make operators quickly and confidently

judge whether and where an application’s traffic gets disturbed
inside the network is to track the flow events that happen to ap-
plication’s traffic flows – If no flow event is happening during an

NPA’s period, the network is innocent to the NPA. Otherwise, the
network may be guilty, and events are good starting points for
cause location. Hence, tracking all flow events can significantly
facilitate timely troubleshooting and mitigation of NPAs.
Design goals. NetSeer is a network monitor that constantly dis-
covers and records all flow events in networks.

Specifically, coverage, scalability, and accuracy are the three pri-
mary requirements in the design of NetSeer. First, full coverage
means that NetSeer should be able to discover all flow events from
high-speed on-going traffic as long as the PDP is correctly func-
tioning and the event generation speed does not exceed NetSeer’s
capacity. Second, NetSeer should be scalable enough to work ef-
fectively even in large scale production cloud networks. Finally,
NetSeer should have zero false negatives and very few false posi-
tives, which is critical for operators’ confidence and efficiency in
debugging NPAs.
Challenges. It is highly challenging to achieve the above require-
ments on coverage, scalability, and accuracy.

• Coverage: For full coverage, NetSeer needs to identify not only
events in ASICs but also events on interfaces and fibers. Espe-
cially, for silent packet drops and packet corruptions over links,
NetSeer also needs to recover the flow identifiers from the com-
pletely lost or partial distorted packets.
• Scalability: There can be thousands of switches, hundreds of
thousands of links, millions of flows and hundreds of Tbps traffic
inside a cloud network. NetSeer needs to effectively compress
event data to avoid impacting applications’ traffic or introducing
too much overhead. Moreover, encapsulating each individually
compressed event into one small packet is costly to transmit
and process. NetSeer needs to reorganize small-sized events to
reduce the overhead.
• Accuracy: Due to the limitations on the computations that can be
performed on programmable switching ASICs, false-positive may
be unavoidable when we push a “no false negative” guarantee
(which is more critical for operators to exonerate or debug the
network with full confidence). Therefore, NetSeer must be able
to tolerate these limitations to fulfill the accuracy requirement.

Design principles. NetSeer takes full advantage of PDP to address
the challenges and achieve the goals.

• For coverage, it traces the entire forwarding logic inside the pro-
grammable ASICs to detect events inside switches and runs in-
data-plane algorithms on the neighboring switches/NICs together
to discover drops and corruptions over links and recover the flow
information of the events.
• For scalability, it implements efficient data structures and algo-
rithms to compress and batch packet-level events into flow-level
events while keeping the information integrity for troubleshoot-
ing NPAs. NetSeer fully utilizes the resources of switch PDP to
process information locally as much as possible, so it can linearly
grow with the network size.
• For accuracy, it jointly leverages programmable ASIC, CPU, and
RAM resources in switches to avoid false negatives, eliminate
false positives with high efficiency, and reliably transmit flow
events to the backend storage.

79



Flow Event Telemetry on Programmable Data Plane SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA

Query Answer
Flow ? E1 & E4

Event 1?

Device 1? E1 ~ E4
& flows

Step 1

Event
Packet

Selection

Step 2

Event
Deduplica-

tion

Step 3

Event
Extraction

and
Batching 

Step 4

False 
Positive 

Elimination 
and Pacing

Raw Packets Event Packets Flow-level Event 
Packets with FPs

Batched Flow
Events with FPs Flow Events

Switch Data Plane (ASIC) Switch
Control Plane

Backend
Storage

Event 1
Event 2
Event 3
Event 4
Event 5

E1
E2
E3
E4
E5

E1
E2
E3
E4
E5

E1
E2
E3
E4
E5

Flow
Events

100% 10% 0.5% 0.01% 0.01%

Single
Switch

Figure 2: The architecture and workflow of NetSeer. (FP stands for false positive.)
�

��������� 	�
���
�
����������
��

�

0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge

Drop
Reasons

0%

50%

100%

≤30 31-60 61-120 121-180 >180
Failure location time (minutes)

Pipeline drop MMU congestion Inter-card drop
Inter-switch drop Switch ASIC failure MMU failure

Figure 3: Packet drops that cause NPAs (from Alibaba).

3.2 Architecture and Workflow
We present the system architecture and workflow of NetSeer

in Figure 2. Each programmable switch takes 4 steps to derive
comprehensive and compact flow events from original traffic.
Step 1: NetSeer uses logics in PDP to precisely select (not sample)
packets that experience flow events. According to our evaluation,
the event packets only occupy <10% of all network traffic.
Step 2: NetSeer leverages the programmability of data plane to
remove redundant event packets, such as merging consecutive
congestion packets of a single flow into one flow-level event, which
could reduce the data volume by 95% and also smooth event bursts
under continuous congestion or drops.
Step 3: NetSeer extracts event information and batches the events
to further reduce the transmission and processing overhead. Doing
so could eliminate unnecessary information and reduce the data
volume by two orders of magnitude.
Step 4: NetSeer leverages the ASIC, CPU, and RAM in switches to
eliminate false positives, and performs pacing and reliable transmis-
sion to deliver events (0.01% of the original traffic) to the backend
storage. Operators could flexibly query the storage by specifying a
flow, event, device, or period and obtain related flow events. Flow
events explicitly correlate flows and abnormal network forwarding
behaviors, which enables operators to quickly locate NPAs if any.

3.3 Event Packet Detection
Generally, NetSeer traces each step in packet processing in the

data plane to detect all events that happen to each packet. While it is
not hard to detect congestion, path change or pause, it is challenging
to fully detect all packet drops.

Understanding packet drops. Packet drop is a major cause of
NPAs. According to Alibaba’s records, 86% NPAs are caused by
various types of packet drops. Figure 3 presents the overall frac-
tions of different packet drop types and breakdown distribution
with network fault location time in Alibaba’s networks. Despite
intuitively packet drops due to congestion should be the most com-
mon type, Figure 3 shows that pipeline drops (e.g. due to routing
blackholes, ACL rules, zero TTL, larger-than-MTU packet size, etc.)
cause more than 60% NPAs. Congestion drop takes about 10%, and
most cases are large scale incasts. Inter-switch and inter-card drops
are silent packet drops or corruption drops over the link between
two independent forwarding pipelines. There are also about 10%
NPAs caused by malfunctioning hardware, e.g. ASIC failures or
MMU failures. Since all types of packet drops can result in long
cause location time, NetSeer must cover as many types as possible.
Detecting intra-switch packet drops. The difficulty to fully de-
tect packet drops inside a switch lies in the limitations of pro-
grammable switching ASICs.

A straightforward general solution to detect intra-switch packet
drops is to record the appearance of packets at the beginning of
the programmable pipeline and confirm the exit of packets at the
pipeline tail. Effective as it seems, this solution has several prob-
lems. First, maintaining such a record requires unacceptable large
memory. If we use compact algorithms such as hash tables, unavoid-
able hash collisions could result in missed or wrongly identified
packet drops and deteriorate event coverage. Second, due to net-
work events, packets could be delayed, dropped, or disorganized.
To verify the exit of every single packet, we have to maintain a
timer for each packet, introducing unacceptable overhead. Finally,
we have to check the packet record at the beginning and end of the
pipeline simultaneously, demanding a synchronization mechanism
that harms performance.

Therefore, instead of a general solution that treats a switch as a
black box, we have to go deeper into the packet forwarding logic
to detect packet drop events. Figure 4 summarizes the reasons for
intra-switch packet drops according to cloud provider Alibaba’s his-
torical records and our conversation with some prominent switch
vendors. Intra-switch packet drop has mainly two types – pipeline
drop and congestion drop. Pipeline drop is caused by pathological
packet format, unavailable route or next-hop interface, or simply the
blockage from ACL rules. Congestion drops happen when queues
are full and have to drop incoming packets. NetSeer embeds drop
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detection logics into the entire packet processing logic in ASICs to
report all packet drops, as shown in Figure 4.
Detecting inter-switch packet drops. Silent packet drops or cor-
ruptions due to connector contamination, damaged or bent fiber,
decaying transmitters, bad transceivers or shared-component fail-
ure are common in production networks [19, 66, 73]. If they happen,
usually the upstream switch cannot detect any problems, while the
downstream switch can see nothing under silent packet drops and
cannot correctly recover flow information under packet corruptions.
Therefore, this type of packet drops is hard to locate. As Figure 3
shows, inter-switch/card drops together occupy 18% of all drops
that cause NPAs. Nevertheless, 50% of packet drops that take over
180 minutes to locate are caused by them. The average location
time for inter-switch/card drops reaches about 161 minutes, which
is longer than the others.

The challenge to detect inter-switch packet drops lies in the
lack of direct visibility in the electrical and optical components be-
tween the two neighboring switches. NetSeer leverages the switch
programmability and coordination of both the upstream and down-
stream switches to build a novel detection mechanism for inter-
switch packet drops. The key idea is to use a four-byte consecutive
packet ID between two neighboring switches to detect packet loss.
As shown in Figure 5, packets are sent from Switch-1’s egress to
Switch-2’s ingress. 1○ Switch-1 inserts a private sequence number,
which increases by 1 per packet, into each packet it sends out to
Switch-2 ( 2○), and Switch-2 removes the sequence numbers. A ring
buffer in Switch-1 caches the 5-tuple (or other flow identifies that
can be flexibly defined) and packet IDs of the recent N packets that

have been sent to Switch-2. 3○ At the downstream side, Switch-2
treats inconsecutive sequence numbers of incoming packets as a
sign of packet drops (Switch-2 drops corrupted packets directly at
MAC layer). 4○ To find the flow information of lost packets, Switch-
2 constructs a packet which contains the starting and ending of
missing sequence numbers and sends it to Switch-1. To avoid this
notification packet from being dropped again on the link, we pro-
duce three copies of it in Switch-2 and send them all to Switch-1
via an independent queue in high priority. NetSeer sends redun-
dant notification packets to protect their arrival at the upstream
switch while keeping the communication overhead under control.
5○ Switch-1 looks up its ring buffer for the packets whose sequence
numbers fall into the missing interval and reports them as dropped
packets. The entire logic runs in PDP at line speed.

NetSeer realizes inter-switch drop detection through inter-switch
coordination, a pattern that is already followed by several production
switch functions such as BFD [28]. Therefore, such coordination
can be implemented with acceptable complexity. Regarding over-
head, despite the entire detection process is performed in the switch
data plane at line rate, NetSeer needs to insert a packet ID field
into every single packet. We could leverage existing unused bits in
packets such as VLAN tags or IP options to minimize the overhead.

Since current programmable ASICs do not support loops inside
a stage, to report multiple consecutive packet drops, we use sub-
sequent packets from Switch-1 to Switch-2 to trigger the lookup
of lost packets. For each subsequent packet that arrives at the ring
buffer, Switch-1 caches the packet and performs the lookup once,
until all lost packets are reported.

Note that limited by the PDP memory and ring buffer size, if too
many consecutive packets are dropped, Switch-2 may not timely
inform Switch-1, and subsequent packets will replace the dropped
packets in the ring buffer. Thus, this mechanism has a certain ca-
pacity of detecting consecutive packet drops and might miss some
packet drops, which we discuss in §3.7. However, even in the case of
ring buffer overriding, NetSeer will not report the wrong packets,
since we compare the packet IDs carried by the notification packets
with those recorded in the ring buffer before retrieving the packets.

In multi-board (card) switches, we use a similar idea to detect
inter-card packet drop, though a trend in the industry is to gradually
deprecate this type of switches in data centers.
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Congestion, path change and pause detection. For congestion,
we measure the queuing delay inside a switch with ingress and
egress meta timestamps created for each packet in the data plane,
and select packets whose queuing delay exceeds a threshold.

For path change, NetSeer learns incoming flows and remembers
the ingress and egress ports of each flow in each switch’s data
plane. It selects the first packet of a new flow or an old flow whose
ports are changed as a path change event packet. To cope with
limited hardware resource capacity, we quickly expire old flows
and maintain the path information of every single new flow. In
this way, we could report the path information of all flows within
limited resources, with slightly more flows reported as new ones.

For pause, we design a queue status detector in the ingress pipeline
that matches PFC frames to understand whether a queue is paused
or not. NetSeer will check PFC (PAUSE or RESUME) messages
to recognize the status of each queue. For each arriving packet,
NetSeer looks up the corresponding queue status in ingress, and
identifies a packet as a pause event packet if the queue is paused.

3.4 Flow Event Generation & Compression
With event packet detection, NetSeer reduces the monitoring

traffic volume by precisely selecting packets that experience net-
work events. However, extreme situations such as severe congestion
can result in massive congested or dropped packets. The key idea
to solve this problem is to aggregate sequential event packets that
belong to one flow into a single flow event. A flow event only con-
tains the flow’s five-tuple, the number of packets involved, event
type, and event details.
Event packets to flow events. We observe that instead of captur-
ing every event packet, operators only need to capture the flows
involved in events. Therefore, for all events except path change
which is flow-level by nature, we define redundant event packets as
those belonging to the same flow and encountering the same event,
and try to eliminate redundancy by aggregating event packets into
flow events, and maintaining one counter for each flow event. This
could reduce the monitoring traffic volume fromO(#event packets)
to O(#event f lows). Event deduplication should achieve the fol-
lowing two goals. (1) Zero false-negative: It should not miss flow
events that should be reported, which is crucial for network exon-
eration and fast NPA location. (2) Minimal false positives: It should
minimize the duplication of reported flow events.

Algorithm 1: Deduplication based on group caching
Input :Event packet P; Group caching table cache[]

1 Function event_packet_deduplication (P , cache[])
2 index← calculate_hash(P.flow_info);
3 if cache[index].flow_info is equal to P .flow_info then
4 cache[index].counter ++;
5 if cache[index].counter ≥ cache[index].target then
6 produce_event(cache[index]);
7 cache[index].target← cache[index].target + C;

8 else
9 cache[index].flow_info← P.flow_info;

10 cache[index].counter← 1;
11 cache[index].target← C; // C is a constant;
12 produce_event(cache[index]);

The state-of-the-art data deduplication method is hashing based
approaches such as bloom filters [38, 69]. The benefits of a bloom
filter are its high memory efficiency and provable worst-case accu-
racy guarantees. Unfortunately, due to hash collisions, the bloom
filter has an unavoidable possibility of false negatives, making it
vulnerable to miss event flows. Specifically, when two different flow
events collide in the same entry of the bloom filter, the later one will
not be reported. Another candidate approach is identifying heavy
hitters through Hashpipe [55] or count-min sketches, and blocking
subsequent packets of the heavy flows. Nevertheless, finding and
blocking heavy flows require counter accumulation and the switch
control plane to install the exact match rule of heavy flows. For
events at fine timescale such as microbursts, the events may have
ended before the rules are installed, making this approach helpless.

To realize event deduplication, we design an effective group
caching mechanism presented in Algorithm 1. For each type of
event, we maintain a hash table with each entry recording an exact
flow 5-tuple (or other flow identifiers that can be flexibly defined),
in order to avoid false negative. We hash each event packet to a
specific entry (line 2) and perform a simple comparison. If the packet
belongs to the recorded flow, the counter of this entry increases by
1, and the packet will not be reported (lines 3–4). Otherwise, the
entry is replaced with the packet’s 5-tuple, and the evicted flow as
well as the new flow will both be reported (lines 8–12). In this way,
the first packet of a flow event will always be reported, and thus
false negative is eliminated. Also, an event is reported every time
the entry’s counter passes a new threshold (lines 5–7). Constant C
controls the interval of the counter-report. The evaluation shows
that group caching could reduce the overhead by ∼95% (§5.2).

Note that NetSeer particularly aggregates packet drops by ACL
at the granularity of ACL rule rather than a flow, because most
ACL drops are normal, creating massive flow drop events. For ACL
aggregation, NetSeer assigns a unique rule ID for each ACL rule
and maintains a drop counter for each rule ID. The switch CPU can
find the ACL rule corresponding to the ID, and report the original
ACL rule and the counter. Note that despite we do not directly
report the flow information of dropped packets, the ACL rule itself
already contains a match field that describes target flows.
Event information extraction. NetSeer further compresses the
monitoring traffic volume by only extracting the necessary informa-
tion from flow events, which includes flow headers such as 5-tuple,
switch-port-queue, and event-specific data such as queuing latency
for congestion events and drop reason for packet drop events. 24
bytes is adequate to store any type of network event (§4). Consid-
ering that the average packet length in data centers is around 724
bytes [8], this approach can further reduce the traffic by about 97%.

3.5 Circulating Flow Event Batching
After event extraction, flow events are sent to the switch CPU

via data plane generated packets. Since each event only occupies
24 bytes and an Ethernet packet length is at least 64 bytes, sending
one event with one packet will result in 62.5% overhead and low
CPU capacity to process small packets.

To address this challenge, NetSeer proposes to batch event pack-
ets, i.e. packing more than one event within each packet, to reduce
the bandwidth overhead and be friendly for CPUs. Considering the
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packet length constraint of Ethernet packets, we recommend batch-
ing 50 events together in one packet. However, enabling batching
is non-trivial due to the limited stage and memory resource in PDP.
A straightforward approach is concatenating events in the switch
memory and report when there are enough events. Nevertheless,
as the memory bit width of each stage is limited [20], one event
cannot be entirely accommodated in one stage, let alone 50.

We propose an innovative circulating event batching mechanism.
We design a stack data structure across multiple stages. The length
of each stack entry is 24 bytes, i.e. the size of an event. Each incom-
ing event is pushed into the stack for temporal caching. Meanwhile,
we leverage the capability of PDP to generate circulating event
batching packets (CEBPs) that constantly recirculate within the
pipeline via a separate internal port. When a CEBP hits the stack,
it pops one event and append the event into its payload. Once
the payload length exceeds a threshold or all events have been
collected, the CEBP is forwarded to CPU and cloned at the same
time with an empty payload to collect latter events. Essentially,
we leverage switch circulation capability and internal port band-
width to compensate for stage memory width limitation without
affecting the forwarding performance of normal traffic. Event batch-
ing is required to produce adequate CEBPs to batch massive flow
events. Evaluation in §5.2 shows that we can satisfy this require-
ment within PDP capacity. Furthermore, circulating event batching
could prolong the event response latency by a few microseconds.

3.6 False Positive Elimination
We define data false positive as repetitive event reports for the

same flow event. False-positive happens due to hash collisions in
group caching tables. If two flow events are hashed to the same
table entry, the later one will replace the former one. If the former
one has not ended, it will replace the later one again. As a result,
hash collisions can result in multiple initial event reports of a single
flow event. False positives not only increase data volume to be
transmitted and processed but also mislead network operators as if
multiple independent events have happened to the same flow.

To fully eliminate false positive in received events, the switch
CPU maintains a hash map data structure and removes duplicated
events. However, due to the limited processing power of switch
CPU, performing hash calculation takes lots of CPU cycles and could
reduce the processing capacity of CPU. Our solution is to enable the
switch pipeline to calculate the hash value in advance and attach
it to the event. Switch CPU could directly retrieve the value for
indexing. Doing so could improve CPU processing capacity by 2.5×
(§5.2). We use TCP for reliable transmission of network events from
switch CPU to backend storage. Report traffic is also monitored by
NetSeer similar to normal traffic to ensure event coverage.

3.7 Preconditions of NetSeer’s Coverage
NetSeer’s effectiveness depends on the correctness of switch

hardware and software. As shown in Figure 4, NetSeer cannot
cover drops due to ASIC or MMU hardware failures. Fortunately,
modern switches have self-checking mechanisms to detect such
failures and actively raise alerts to operators.

Moreover, resource in programmable switches is limited [20, 40].
Thus, there is a capacity for event detection within each switch. We
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Figure 6: NetSeer switch implementation.

discuss the capacity in §4 and illustrate why NetSeer’s capacity
can satisfy most(∼90%) real-world situations.

Finally, middleboxes such as Firewall and Load Balancer are
also potential sources of NPAs. However, middleboxes are imple-
mented on various platforms such as commodity servers [58], pro-
grammable hardware devices [40], or dedicated hardware, requiring
corresponding customized monitoring mechanisms. Based on the
design experience of NetSeer, we propose three principles to mon-
itor middleboxes.
• Inter-device drop awareness. Middleboxes’ NICs or software stacks
should be able to collaborate with network switches to detect
inter-device drops to ensure coverage.
• Event-based anomaly detection. Middleboxes should be able to
detect local events such as packet drop or buffer overflow accord-
ing to its components and functionality. Detecting events instead
of coarse-grained statistics is helpful for failure location with
scalability in mind.
• Reliable report. Middleboxes should be able to report events
reliably to maintain data accuracy.

4 IMPLEMENTATION
We have implemented NetSeer on switches with Tofino 32D

ASIC and x86 CPU, and Netronome NFP-4000 smartNIC [47], with
∼12,000 LoC, as an extension of the regular data plane.
Switch ASIC. Figure 6 presents the implementation of NetSeer
ASIC logic on programmable switches. NetSeer logic can be embed-
ded into original switch programs (like switch.p4 in our experiment)
as an extension. The inter-switch drop detection modules are at
the beginning of ingress and the ending of egress. We layout the
pipeline drop and pause detection modules in ingress, enable con-
gestion drop detection in the MMU and detect congestion, path
change, pipeline drop in egress. Among them, flow events from
ingress and MMU are redirected to an internal port to avoid af-
fecting normal packet forwarding. All events are processed by the
event compression module and finally delivered to the CPU.
Switch CPU. As shown in Figure 6, we have implemented false
positive elimination and pacing in switch CPU and used reliable
TCP to deliver batched events to the backend. To maximize capacity,
we implement the logic using DPDK. However, ports bound by
DPDK cannot directly expose IP to the network or answer ARP and
ICMP, making it challenging to communicate with the backend over

83



Flow Event Telemetry on Programmable Data Plane SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA

0% 50% 100%

Exact xbar
Ternary xbar

Hash bits
SRAM
TCAM

VLIW actions
Stateful ALU

PHV

Switch.P4

NetSeer

(a) Overall resource usage
0% 10% 20% 30% 40%

Event detection
Inter-switch
Deduplication
Batching

(b) Detailed resource usage
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TCP. Our solution is to create a native Linux socket and employ a
kernel protocol stack to communicate with the backend. Events are
highly aggregated and could be handled easily by the kernel.
Event formats. We extract flow and event information in the
switch data plane before sending it to switch CPU. Specifically, we
maintain the following information for each type of event.
• Flow (13B): <5-tuple> for TCP/UDP packets. Flow fields can be
flexibly defined and extended according to packet formats.
• Congestion (5B): <egress port, egress queue, queue latency>.
• Path change (2B): <ingress port, egress port>.
• Pause (2B): <egress port, egress queue>
• Drop (3B): <ingress port, egress port, drop code>. Packet drop rea-
sons are encoded into the drop code field.
In addition, we attach a 2-byte counter and a 4-byte pre-calculated

hashing value into each event report. Thus, we need ≤24 bytes to
report an event for a TCP flow (identified by 5-tuple).
NIC. We implement the inter-switch drop detection and inter-
switch packet ordering and recording modules (shown in Figure 6)
in the NICs, and store detected events into local logs. Doing so
guarantees event coverage on all network components including
the edge links and interfaces.
PDP resource occupation. Regarding NetSeer’s PDP resource
usage, the usage of all resource types except stateful ALU is merely
below 20%. As for stateful ALU (40%), the event batcher and the
inter-switch packet drop detection contribute to the most usage
(28% in total), as they need to frequently conduct stateful operations
over cross-packet states.

On NICs, NetSeer brings 5% additional usage of memory and on-
board memory external to ASIC, and about 33% external memory
cache to accelerate access to external memory.
Capacity. Due to the limited hardware resources, NetSeer’s capac-
ity for event detection and report is also limited. We summarize the
capacity of different events and resource bottleneck below. More-
over, according to statistics from Alibaba, we observe that NetSeer
can ensure full event coverage under most (∼90%) situations, and
can work together with existing monitoring systems to quickly
mitigate NPAs under extreme situations.
• Inter-switch drop: limited by the size of the ring buffer. Our de-
tection mechanism can detect 1,000 continuous 1024-byte packet
drops with merely 800KB SRAM (§5.2). Existing researches [73]
show that 87.33% corrupted links in data centers have a packet
corruption ratio of <0.1%. Under such a low ratio, the probability
of 1,000 consecutive losses is extremely low. When corruption

ratio is high, network operators could closely monitor the coun-
ters and statistics of packet corruption and perform actions such
as isolating a port under anomaly to quickly mitigate NPAs.
• MMU Drop: limited by switch MMU’s capability to redirect pack-
ets to be dropped (∼40Gbps). This means that NetSeer could
capture every packet drop in MMU if the total drop speed of
all ports is ≤40Gbps. We derive per-second MMU drop counters
from Alibaba and observe that the drop rate at the 99th percentile
is around 2.9e-5, which means 186Mbps for a 6.4Tbps switch. This
proves that NetSeer ensures full MMU drop coverage under 99%
situations. Under rare cases where a switch is heavily dropping
packets, counters and statistics could timely reveal the problem
to operators.
• Pause, ingress pipeline drop, and MMU drop: jointly limited by the
bandwidth of switch’s internal port (100Gbps). This capacity can
easily be increased if we use or add more internal or physical
ports to transmit these events.
• All events: jointly limited by the capacity of PCIe between the
pipeline andCPU (18Gbps), and the power of switch CPU (13.4Gbps
with 2 cores). Evaluation in §5.2 shows the bandwidth overhead
of NetSeer is 0.01% of the original traffic. For a 6.4Tbps switch,
the produced flow event volume is <1Gbps, which is within the
capacity of PCIe and CPU.
We present more details regarding capacity in §5.2.

5 EVALUATION
We evaluate NetSeer on a testbed with a 4-ary Fat-Tree topol-

ogy [59] composed of 10 Tofino 32D switches (3.2T) and 8 servers.
Each server has 192 Intel Xeon Platinum 8163 2.5GHz CPU cores,
64GB RAM, and a Netronome NFP-4000 smartNIC (4×25G) [47].
Switches are interconnected with 100G links, while each server is
connected to ToR with 4×25G links. From a networking point of
view, the testbed can be treated to have 32 servers, each with a
25Gbps uplink to ToR.

We also deploy five existing network monitoring systems for
comparison purposes, including SNMP counters [9], packet sam-
pling, Pingmesh [19], EverFlow [72], and NetSight [21] in the
testbed. For sampling, we configure the sampling rate as 1:10, 1:100,
and 1:1000. We enable Pingmesh to send one round of full-mesh
probes every 1 second. For EverFlow, switches mirror SYN and FIN
packets to the collector with ERSPAN. Meanwhile, to simulate Ev-
erflow’s on-demand packet telemetry, we repeatedly choose 1,000
random flows and perform packet telemetry over these flows with a
minute time interval. NetSight enables switches to mirror all pack-
ets with metadata including forwarding latency and ports, which
is very similar to INT postcard mode [31]. All mirrored packets are
truncated to 64 bytes. We evaluate NetSeer with case studies (§5.1)
and performance benchmark (§5.2).

5.1 Real Case Study
To understand NetSeer’s effectiveness on troubleshooting NPAs,

we study 5 real and representative NPAs and occasional SLA viola-
tions of a block storage system from Alibaba.
Troubleshooting network incidents. We reproduce 5 real Al-
ibaba’s NPA related incidents on our testbed with inferred topol-
ogy, number of flows, and flow traffic rate during the incidents.
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We discuss and confirm the above parameters with an experienced
operator from Alibaba, and invite him to locate the incident cause
with NetSeer on our testbed. We introduce each case and explain
why NetSeer can reduce the cause location time by 61%∼99%, as
shown in Figure 8(a).
#1) Routing error due to network updates. A software engineering
product reported network connectivity issues, which was caused
by a problematic network update that installed a wrong routing
entry into a core router. However, drop counters and host-based
probing within the cluster appeared normal. Operators discovered
a few 5-tuples that suffered packet drop, but could not locate the
failure due to unknown flow paths. Thus, operators had to review
possibly relevant network updates and finally located the faulty
update. With NetSeer, once affected flows are found, operators
could quickly identify path change events caused by the faulty
update and reduce location time from 162 minutes to 14 seconds.
#2) ACL configuration error. A newly created VM in provider Al-
ibaba’s cluster could not access the Internet. The actual cause was
a misconfigured ACL rule. It took operators 28 minutes to commu-
nicate with the client to obtain the affected flows. However, cause
location was surprisingly difficult, as existing network monitors
cannot correlate flows to problematic statistics, resulting in so many
possible causes like routing errors, switch failures, ACL errors, etc..
With NetSeer, after acquiring affected flows, we could immediately
discover pipeline drops by ACL and cut the location time by 61%.
#3) Silent drop due to parity error. A Redis service received customer
complaints about probabilistic request timeout under massive PHP
connections, which was caused by random silent drop due to switch
memory bit flip. The corrupted entry happened to reside outside
the switch detection zone and therefore was not reported through
Syslog. Most time (96.6%) was spent on identifying the 5-tuples that
encountered failure and their paths. NetSeer can help operators
catch pipeline drops due to table lookup miss, identify flows to or
from Redis, and locate the problem within 30 seconds.
#4) Congestion due to unexpected volume. Multiple online VMs of
some customers could not be visited through ssh or ping. The ac-
tual cause was an unexpected volume from another customer that
congested a core switch. Statistics revealed that the throughput
of the core switch reached its capacity. Operators’ first idea was
scheduling the large flows to a backup link to recover the connec-
tivity of victims. However, operators spent a long time figuring
out which flows to migrate, due to the lack of visibility into flows
that caused congestion. With NetSeer, operators could find the
flows that contributed the most to congestion by checking MMU
congestion drop counters and perform scheduling accordingly.
#5) SSD firmware driver bug. Alibaba’s storage performance moni-
tor discovered high latency on a remote SSD cloud disk. Continuous
monitoring of the next 27 minutes showed that storage servers in
an entire POD suffered from frequent TCP retransmission. The
storage service owner immediately suspected that the network was
dropping packets. However, network operators only discovered
MMU drops in a ToR switch of that POD but were not sure whether
dropped packets included storage traffic. They had to dig into switch
logs to check whether the ToR encountered any problems. At the
284th minute, the storage service owner learned that SSD buffer
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Figure 8: Real case study with NetSeer.

could be exhausted and start dropping requests under mixed heavy
read-write workloads due to a driver bug. Finally, the problem-
atic storage servers were isolated, and the performance recovered.
Meanwhile, operators were unable to exonerate the physical net-
work due to the incapability of correlating flows to events. With
NetSeer, operators could quickly find how many storage pack-
ets are dropped by which switches and accelerate the debugging
process by clearly stating network responsibility within 42 seconds.
Summary. From our experience of analyzing and debugging the
above cases, we observe that existing monitoring systems fail to
gather necessary information for NPA location including victim
5-tuple, flow paths, and explicit correlations between flows and
events. In comparison, once we obtain trivial clues such as src-IP,
flow, or suspicious switch ID, NetSeer helps operators quickly find
related events in seconds.
Troubleshooting occasional SLA violations. A block storage
application is one of the most fundamental products of Alibaba.
Customer VMs communicate with storage backend through RPC
calls. The application has comprehensive end-host performance
monitoring mechanisms that collect metrics with a 15s interval.
Occasionally, RPC read or write latency is longer than expected,
resulting in bad user experience. Slow RPC could be caused by (1)
slow application processing due to software bugs or bursty traffic,
or (2) physical network faults such as congestion or packet drops.

We obtain Alibaba’s production storage application and real-
world traces of storage visits from an advertisement product and
run it on our testbed for 6 hours. We collect monitoring data during
that period and try to contribute detected slow RPC calls to the
application or the network. Unfortunately, existing monitoring
systems fail to explain a large portion of slow RPCs. First, metrics
collected by host monitors are too coarse-grainedwith a 15s interval
and can only explain 40.8% NPAs, as shown in Figure 8(b). Second,
existing network monitors fail to capture network faults on-site
with real-time pings or hindsight probes, and can only explain 44%
NPAs.With NetSeer’s help, we can tell whether and how much
the network is responsible for each slow RPC, and explain much
more (97%) NPAs, including those whose causes were unknown
with existing monitors, and some NPAs that were considered as
application-induced but were partially caused by the network as
well (i.e. the Both legend in Figure 8(b)).
Summary. NetSeer can help network operators claim network inno-
cence or quickly locate NPA causes. Without NetSeer, applications
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naturally blame the network for connectivity issues or NPAs, and
stop looking for other potential causes before network response.
By comprehensively capturing events, NetSeer can clearly identify
network responsibility and accelerate the NPA debugging process.

5.2 Performance Benchmark
We evaluate NetSeer’s coverage, accuracy, scalability, and ca-

pacity on our testbed. We start 8 clients to communicate with 32
servers. Each client has 100K flows and a fan-in ratio of 4. We pro-
duce traces based on five real-world traffic distributions including
DCTCP [4], VL2 [18], CACHE, HADOOP, and WEB [52]. We set the
average link utilization as 70% to produce enough pressure. In the
experiments, congestion and MMU drop are naturally produced,
while we manually inject inter-switch drop, pipeline drop, and path
change events. 1

NetSeer ensures full event coverage and accuracy. We show
the coverage ratios of path change, MMU drop, inter-switch drop,
and pipeline drop in Figure 9, and congestion in Figure 10. Only
NetSeer and NetSight have full event coverage, while other so-
lutions merely cover <10% events. Specifically, sampling cannot
capture packet drops. EverFlow’s coverage is <1% for all event types.
Pingmesh can detect the existence of 0.02% congestions, but cannot
detect involved flows.

NetSight performs per-packet telemetry and can capture all
events. We compare events derived from NetSight with events
collected by NetSeer and find that when the data rate is within
hardware capacity, NetSeer events are accurate with zero FP/FN.
NetSeer is scalable with 0.01% bandwidth overhead. Figure 11
shows that NetSeer only incurs <0.01% bandwidth overhead. For a
6.4Tbps switch, the overhead is at most 640Mbps or ∼4M events per
second (eps), which is comparable to EverFlow and 1:1000 sampling.
Meanwhile, NetSight suffers from∼18% bandwidth overhead, which
is three orders of magnitude higher than NetSeer. For processing
overhead, our testbed produces 32 × 25Gbps × 70% / 1KB (average
packet size) = 70Mpps traffic. For NetSight, one CPU core can
process postcards at 240Kpps [21]. This means that we need up
to 70Mpps × 5 hops / 240Kpps = 1458 cores, while all servers in
our testbed have 1536 cores. In comparison, NetSeer achieves full
coverage with merely 2 × 10 = 20 switch CPU cores.

Next, we evaluate how each step in NetSeer can reduce band-
width overhead. We show in Figure 13(a) that the overall event

1As our SmartNIC does not support PFC, we do not evaluate pauses. Instead, we use
congestion and MMU drops to assess how NetSeer handles congestions.
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Figure 13: Per-step bandwidth overhead.

packet ratio is <10% in our experiments, which brings >90% over-
head reduction. Then, as presented in Figure 13(b), NetSeer con-
ducts event packet deduplication that decreases overhead by 95%.
Next, NetSeer extracts event information from event packets and
further reduces overhead by 98%, resulting in an overall <0.01%
overhead. Finally, false-positive elimination in switch CPU brings
less than 7% overhead reduction.

To further understand the scalability of NetSeer, we calculate
the monitoring traffic volume as well as the processing overhead
of NetSeer according to the configuration of Alibaba production
data centers. For a normal 3-tier data center network, connecting
10,000 servers requires approximately 400 switches, which produce
a maximum of 400×640Mbps=256Gbps monitoring traffic at most.
Processing such traffic requires 3 servers with 100Gbps NICs, which
implies a 0.03% processing overhead.
NetSeer’s capacity within hardware resources. Event data will
pass several modules including event detection, compression, PCIe,
and switch CPU. We evaluate the processing capacity of each mod-
ule within the switch resources and the maximal ratio of network
events that can be detected.
Module capacity. Event extraction, deduplication, and batching
compress data collectively in the switch data plane. The first two
steps can work in line rate. However, batching performance is
limited by the bandwidth of internal ports. Figure 12 shows that
batching can report event messages at about 86Meps or 17.7Gbps,
which is enough for the maximum possible event volume (∼4Meps)
of a 6.4Tbps switch.

To evaluate the capacity of PCIe channel between pipeline and
switch CPU, we vary the batch size and #CPU cores for packet
processing. Figure 14(a) shows that when the batch size is ≥20, the
PCIe channel works at 9.5Gbps or 57Meps with 1 CPU core, and
18Gbps or 110Meps with 2 CPU cores.

Switch CPU’s capacity varies with the number of flows and
packet rates. We allocate 2 CPU cores and set the batch size to 50.
As shown in Figure 14(b), two cores can process events at 82Meps
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Figure 14: Capacity of PCIe and switch CPU.
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Figure 15: Capacity of inter-switch drop detection.

when there are 1K concurrent flows and can work at 4.5Meps when
there are 1M concurrent flows, which can handle the maximum
possible events in a switch. Moreover, offloading hash calculation
to PDP can save 71.4% CPU cycles and improve CPU processing
capacity by 2.5×.
Event detection capacity. For inter-switch drops, Figure 15(a) shows
that the ring buffer should have ≥25 slots to retrieve at least one
1024-byte dropped packet. As shown in Figure 15(b), with 800KB
SRAM in total, NetSeer can detect 1,000 consecutive drops of 1024B
packets for each port of a switch with 64×100Gbps ports.

As discussed in §4, We can detect all path change and congestion
when forwarding at the line rate. Other events have to redirect
event packets and are limited by the bandwidth of internal ports.
The capacity is ∼40Gbps for MMU drop, and 100Gbps for ingress
pipeline drop, MMU drop, and pause.

6 RELATEDWORK
Networkmonitoring has beenwidely and continuously researched

over decades, but none of the existing solutions are designed for
fast NPA cause location.
Host-based network monitoring. Host-based monitoring sys-
tems either send probes into the network and speculate network
status according to responses [2, 7, 13, 19, 41, 48, 50, 62], or analyze
transport layer or other I/O performance to inference potential
network failures [5, 6, 10, 16, 29, 44, 45, 53, 67, 70]. Some works
exploit moderate support from switches to execute measurement
instructions [26, 36] or insert path information [60, 61]. These sys-
tems can infer the existence of NPAs from the perspective of end
hosts. However, they cannot precisely locate causes of all NPAs in
the network with data solely from end hosts, especially small-scale
packet drops. Thus, they suffer from compromised coverage and
accuracy when used to detect network events.
Network statistics collection. These systems obtain sampled or
aggregated data or counters directly from network switches [9, 11,
54]. Operators could detect network failures by analyzing rules

or counters [14, 17, 35, 39, 64, 66, 73]. Recent works adopt hash
tables or sketches for network measurement in hardware or soft-
ware switches for memory efficiency and provable accuracy [3,
22, 23, 37, 38, 42, 43, 68, 69]. Network operators could deeply un-
derstand the network status and detect severe problems such as
switch offline or DDoS attacks with these systems. However, with
the collected coarse-grained statistics, operators have difficulty dis-
covering events at a fine timescale that could result in NPAs, or
correlating flows to detected network events with high confidence,
making them incapable of fast NPA mitigation.
Packet telemetry. ERSPAN [12, 49, 51, 72] and INT [21, 31] suf-
fer from granularity-cost trade-off. Thus, they often work as on-
demand debugging tools and cannot fully capture transient or ran-
dom events on-site. NetSight [21] proposes a potential optimization
by only encoding changes between successive postcards in switches.
The authors estimate that the traffic overhead after this improve-
ment is 7% (14% to further distinguish between intra- and inter-
switch drops like NetSeer). In comparison, NetSeer has the same
event coverage with NetSight but only incurs <0.01% bandwidth
overhead, which is a huge improvement in scalability.
Programmable switch assisted measurement. The advent of
programmable switches have enabled a series of researches to per-
form (1) flow measurement [24, 32, 56, 57], (2) specific event moni-
toring including microbursts [27], the existence of packet loss with-
out any details regarding drop reasons [33], or heavy-hitters [55],
and (3) monitoring frameworks that support flexible queries based
on high-level primitives [20, 46, 63]. Especially, PacketScope [63] al-
lows querying the lifecycle of every packet inside the programmable
switch with a Spark-like dataflow language. However, these sys-
tems are not designed with the goal of comprehensively monitoring
network events, such as inter-switch packet drops that are time-
consuming to locate with existing tools. Thus, they cannot quickly
mitigate NPAs with high event coverage and confidence.

7 CONCLUSION
In this paper, we present NetSeer, an in-data-plane network

monitor that precisely catches flow-level data-plane events with ad-
vanced programmable data planes to facilitate the troubleshooting
of NPAs. We show that NetSeer can achieve nearly-full flow event
coverage, good scalability with network sizes, and high accuracy of
flow event data with novel designs that fully explore the flexibility
and performance of programmable data planes. With case studies
and experiments, we reveal NetSeer’s powerful ability to accelerate
the mitigations of various NPAs.

This work does not raise any ethical issues.
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