
This paper is included in the Proceedings of the
15th USENIX Symposium on Operating Systems

Design and Implementation.
July 14–16, 2021
978-1-939133-22-9

Open access to the Proceedings of the
15th USENIX Symposium on Operating
Systems Design and Implementation

is sponsored by USENIX.

The nanoPU: A Nanosecond Network Stack
for Datacenters

Stephen Ibanez, Alex Mallery, Serhat Arslan, and Theo Jepsen, Stanford University;
Muhammad Shahbaz, Purdue University; Changhoon Kim and Nick McKeown,

Stanford University
https://www.usenix.org/conference/osdi21/presentation/ibanez

The nanoPU: A Nanosecond Network Stack for Datacenters
Stephen Ibanez, Alex Mallery, Serhat Arslan, Theo Jepsen,

Muhammad Shahbaz?, Changhoon Kim, and Nick McKeown
Stanford University ?Purdue University

Abstract
We present the nanoPU, a new NIC-CPU co-design to

accelerate an increasingly pervasive class of datacenter appli-
cations: those that utilize many small Remote Procedure Calls
(RPCs) with very short (µs-scale) processing times. The novel
aspect of the nanoPU is the design of a fast path between the
network and applications—bypassing the cache and memory
hierarchy, and placing arriving messages directly into the CPU
register file. This fast path contains programmable hardware
support for low latency transport and congestion control as
well as hardware support for efficient load balancing of RPCs
to cores. A hardware-accelerated thread scheduler makes sub-
nanosecond decisions, leading to high CPU utilization and
low tail response time for RPCs.

We built an FPGA prototype of the nanoPU fast path by
modifying an open-source RISC-V CPU, and evaluated its per-
formance using cycle-accurate simulations on AWS FPGAs.
The wire-to-wire RPC response time through the nanoPU
is just 69ns, an order of magnitude quicker than the best-of-
breed, low latency, commercial NICs. We demonstrate that
the hardware thread scheduler is able to lower RPC tail re-
sponse time by about 5× while enabling the system to sustain
20% higher load, relative to traditional thread scheduling tech-
niques. We implement and evaluate a suite of applications,
including MICA, Raft and Set Algebra for document retrieval;
and we demonstrate that the nanoPU can be used as a high
performance, programmable alternative for one-sided RDMA
operations.

1 Introduction
Today, large online services are typically deployed as multiple
tiers of software running in data centers. Tiers communicate
with each other using Remote Procedure Calls (RPCs) of
varying size and complexity [7,28,57]. Some RPCs call upon
microservices lasting many milliseconds, while others call
remote (serverless) functions, or retrieve a single piece of
data and last only a few microseconds. These are important
workloads, and so it seems feasible that small messages with
microsecond (and possibly nanosecond) service times will
become more common in future data centers [7, 28]. For
example, it is reported that a large fraction of messages com-
municated in Facebook data centers are for a single key-value
memory reference [4, 7], and a growing number of papers
describe fine-grained (typically cache-resident) computation
based on very small RPCs [22, 23, 28, 57].

Three main metrics are useful when evaluating an RPC sys-
tem’s performance: (1) the median response time (i.e., time

from when a client issues an RPC request until it receives a
response) for applications invoking many sequential RPCs;
(2) the tail response time (i.e., the longest or 99th %ile RPC
response time) for applications with large fanouts (e.g., map-
reduce jobs), because they must wait for all RPCs to complete
before continuing [17]; and (3) the communication overhead
(i.e., the communication-to-computation ratio). When com-
munication overhead is high, it may not be worth farming out
the request to a remote CPU at all [57]. We will sometimes
need more specific metrics for portions of the processing
pipeline, such as the median wire-to-wire latency, the time
from when the first bit of an RPC request arrives at the server
NIC until the last bit of the response departs.

Many authors have proposed exciting ways to accelerate
RPCs by reducing the message processing overhead. These
include specialized networking stacks, both in software (e.g.,
DPDK [18], ZygOS [51], Shinjuku [27], and Shenango [49]),
and hardware (e.g., RSS [43], RDMA [9], Tonic [2], NeB-
uLa [57], and Optimus Prime [50]). Each proposal tackles
one or more components of the RPC stack (i.e., network trans-
port, congestion control, core selection, thread scheduling, and
data marshalling). For example, DPDK removes the memory
copying and network transport overhead of an OS and lets a
developer handle them manually in user space. ZygOS imple-
ments a scheme to efficiently load balance messages across
multiple cores. Shenango efficiently shares CPUs among ser-
vices requiring RPC messages to be processed. eRPC [28]
cleverly combines many software techniques to reduce me-
dian RPC response times by optimizing for the common case
(i.e., small messages with short RPC handlers). These systems
have successfully reduced the message-processing overhead
from 100s of microseconds to 1–2 microseconds.

NeBuLa [57] is a radical hardware design that tries to
further minimize response time by integrating the NIC with
the CPU (bypassing PCIe), and dispatching RPC requests
directly into the L1 cache. The approach effectively reduces
the minimum wire-to-wire response time below 100ns.

Put another way, these results suggest that with the right
hardware and software optimizations, it is practical and useful
to remotely dispatch functions as small as a few microseconds.
The goal of our work is to enable even smaller functions,
with computation lasting less than 1µs, for which we need to
minimize communication overhead. We call these very short
RPCs nanoRequests.

The nanoPU, presented and evaluated here, is a combined
NIC-CPU optimized to process nanoRequests very quickly.
When designing nanoPU, we set out to answer two questions.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 239

d

PISA
Ingress

Egress

E
t
h
e
r
n
e
t

M
A
C

+

S
e
r
i
a
l

I
O

HW Core Sel.

Global RXQs

Programmable NIC

Core 0

HW Thread Sched.

netRX
netTXRX/TXQs

R
e
g
i
s
t
e
r
s

Reassembly

Message Buffer

HW Transport

Packetization

Message Buffer

Pkts

Msgs

Global TXQs

Core N-1

HW Thread Sched.

netRX
netTXRX/TXQs

R
e
g
i
s
t
e
r
s

1

L
1
C

L
1
C

M
a
i
n

M
e
m
o
r
y

D

2

3
4

5

6
7

8
9

Ethernet MAC

Sp
li

tt
er

Ar
bi

te
r

De
cr
yp
t

En
cr
yp
t

PISA Pipeline

Tr
an
sp
or
t

Core0

Co
nt
ex
t

Pkt Out

Msg Out

Pkt In

Msg In

Th
re

ad
Sc

he
du

le
r

NI
C

Pa
ck

et
Da

ta
pa

th
NI

C
Me

ss
ag

e
Da

ta
pa

th

Et
he

rn
et

 M
AC

Splitter

Arbiter

Encrypt

Decrypt

MA
U
Pi
pe
li
ne

Transport

Ethernet MAC

Sp
li

tt
er

Arbiter

EncryptDe
cr
yp
t

MAU PipelineTr
an
sp
or
t

CPU

head
tail

Re
gi

st
er

s

FIFOs

Ethernet MAC

Sp
li

tt
er

Arbiter

EncryptDe
cr
yp
t

MAU PipelineTr
an
sp
or
t

CPU

head
tail

Re
gi

st
er

s

FIFOs

Ethernet MAC

Sp
li

tt
er

Arbiter

EncryptDe
cr
yp
t

MAU PipelineTr
an
sp
or
t

CPU

head
tail

Re
gi

st
er

s

FIFOs

CP
U0

CP
U1

CP
U2

Et
he

rn
et

 M
AC

Splitter

Arbiter

Encrypt

Decrypt

MA
U

Pi
pe

li
ne

Transport

CP
U he
ad

ta
il

Registers

FI
FO

s

Control

Pk
t
Ou
t

Ms
g
Ou
t

Pk
t
In

Ms
g
In

Thread
Scheduler

NIC
Datapath

NIC-Core
Interface

Et
he

rn
et

 M
AC

Splitter

Arbiter

Encrypt

Decrypt

MA
U
Pi
pe
li
ne

Transport

Ethernet MAC

Sp
li

tt
er

Arbiter

EncryptDe
cr
yp
t

MAU PipelineTr
an
sp
or
t

CPU

head
tail

Re
gi

st
er

s

FIFOs

Ethernet MAC

Sp
li

tt
er

Arbiter

EncryptDe
cr
yp
t

MAU PipelineTr
an
sp
or
t

CPU

head
tail

Re
gi

st
er

s

FIFOs

Ethernet MAC

Sp
li

tt
er

Arbiter

EncryptDe
cr
yp
t

MAU PipelineTr
an
sp
or
t

CPU

head
tail

Re
gi

st
er

s

FIFOs

CP
U0

CP
U1

CP
U2

Et
he

rn
et

 M
AC

Splitter

Arbiter

Encrypt

Decrypt

MA
U
Pi
pe
li
ne

Transport

Ethernet MAC

Sp
li

tt
er

Arbiter

EncryptDe
cr
yp
t

MAU PipelineTr
an
sp
or
t

CPU

head
tail

Re
gi

st
er

s

FIFOs

Ethernet MAC

Sp
li

tt
er

Arbiter

EncryptDe
cr
yp
t

MAU PipelineTr
an
sp
or
t

CPU

head
tail

Re
gi

st
er

s

FIFOs

Ethernet MAC

Sp
li

tt
er

Arbiter

EncryptDe
cr
yp
t

MAU PipelineTr
an
sp
or
t

CPU

head
tail

Re
gi

st
er

s

FIFOs

CP
U0

CP
U1

CP
U2

Core1 Core2

CP
Us

 w
it

h
Na

no
ke

rn
el

 &
Na

no
ta

sk
s

Co
nt
ex
t
FI
FO
s

(a
)

(b
)

(c
)

(d
)

Co
nt
ex
t

CS
Rs

L-
NI

C

CSRs

Ethernet MAC

Sp
li

tt
er

Ar
bi

te
r

De
cr
yp
t

En
cr
yp
t

PISA Pipeline

Tr
an
sp
or
t

Core0

Co
nt
ex
t

Pkt Out

Msg Out

Pkt In

Msg In

Th
re

ad
Sc

he
du

le
r

NI
C

Pa
ck

et
Da

ta
pa

th
NI

C
Me

ss
ag

e
Da

ta
pa

th

Et
he

rn
et

 M
AC

Splitter

Arbiter

Encrypt
Decrypt

MA
U
Pi
pe
li
ne

Transport

Ethernet MAC

Sp
li

tt
er

Arbiter

EncryptDe
cr
yp
t

MAU PipelineTr
an
sp
or
t

CPU

head
tail

Re
gi

st
er

s

FIFOs

Ethernet MAC

Sp
li

tt
er

Arbiter

EncryptDe
cr
yp
t

MAU PipelineTr
an
sp
or
t

CPU

head
tail

Re
gi

st
er

s

FIFOs

Ethernet MAC

Sp
li

tt
er

Arbiter

EncryptDe
cr
yp
t

MAU PipelineTr
an
sp
or
t

CPU

head
tail

Re
gi

st
er

s

FIFOs

CP
U0

CP
U1

CP
U2

Et
he

rn
et

 M
AC

Splitter

Arbiter

Encrypt

Decrypt

MA
U

Pi
pe

li
ne

Transport

CP
U he
ad

ta
il

Registers

FI
FO

s

Control

Pk
t
Ou
t

Ms
g
Ou
t

Pk
t
In

Ms
g
In

Thread
Scheduler

NIC
Datapath

NIC-Core
Interface

Et
he

rn
et

 M
AC

Splitter

Arbiter

Encrypt

Decrypt

MA
U
Pi
pe
li
ne

Transport

Ethernet MAC

Sp
li

tt
er

Arbiter

EncryptDe
cr
yp
t

MAU PipelineTr
an
sp
or
t

CPU

head
tail

Re
gi

st
er

s

FIFOs

Ethernet MAC

Sp
li

tt
er

Arbiter

EncryptDe
cr
yp
t

MAU PipelineTr
an
sp
or
t

CPU

head
tail

Re
gi

st
er

s

FIFOs

Ethernet MAC

Sp
li

tt
er

Arbiter

EncryptDe
cr
yp
t

MAU PipelineTr
an
sp
or
t

CPU

head
tail

Re
gi

st
er

s

FIFOs

CP
U0

CP
U1

CP
U2

Et
he

rn
et

 M
AC

Splitter

Arbiter

Encrypt
Decrypt

MA
U
Pi
pe
li
ne

Transport

Ethernet MAC

Sp
li

tt
er

Arbiter

EncryptDe
cr
yp
t

MAU PipelineTr
an
sp
or
t

CPU

head
tail

Re
gi

st
er

s

FIFOs

Ethernet MAC

Sp
li

tt
er

Arbiter

EncryptDe
cr
yp
t

MAU PipelineTr
an
sp
or
t

CPU

head
tail

Re
gi

st
er

s

FIFOs

Ethernet MAC

Sp
li

tt
er

Arbiter

EncryptDe
cr
yp
t

MAU PipelineTr
an
sp
or
t

CPU

head
tail

Re
gi

st
er

s

FIFOs

CP
U0

CP
U1

CP
U2

Core1 Core2

CP
Us

 w
it

h
Na

no
ke

rn
el

 &
Na

no
ta

sk
s

Co
nt
ex
t
FI
FO
s

(a
)

(b
)

(c
)

(d
)

Co
nt
ex
t

CS
Rs

L-
NI

C

CSRs

L
L
C

DMA over PCIe

Figure 1: The nanoPU design. The NIC includes ingress and egress PISA pipelines as well as a hardware-terminated
transport and a core selector with global RX queues; each CPU core is augmented with a hardware thread scheduler
and local RX/TX queues connected directly to the register file.

The first is, what is the absolute minimum communication
overhead we can achieve for processing nanoRequests?
NanoRequests are simply very short-lived RPCs marked by
the client and server NICs for special treatment. In nanoPU,
nanoRequests follow a new low-overhead path through the
NIC, bypassing the OS and the memory-cache hierarchy and
arriving directly into running threads’ registers. All message
reassembly functions, transport and congestion control logic
are moved to hardware, as are thread scheduling and core
selection decisions. Incoming nanoRequests pass through
only hardware before reaching application code. Our nanoPU
prototype can deliver an arriving nanoRequest into a running
application thread in less than 40ns (less than 15ns if we
bypass the Ethernet MAC)—an order of magnitude faster
than the fastest commercial NICs [20] and faster than the
quickest reported research prototype [57]. For compatibility
with existing applications, nanoPU allows all other network
traffic (e.g., larger RPCs) to traverse a regular path through a
DMA NIC, OS, and memory hierarchy.

Our second question is, can we minimize tail response
time by processing nanoRequests in a deterministic
amount of time? The answer is a qualified yes. Because
nanoRequests are processed by a fixed-latency hardware
pipeline, if a single-packet request arrives at a waiting core,
its thread will always start processing the message in less
than 40ns. On the other hand, if the core is busy, or another
request is queued ahead, then processing can be delayed. In
Section 2.2, we show how our novel hardware thread sched-
uler can bound the tail response time in this case too, under
specific assumptions (e.g., that a nanoRequest can bound its
CPU processing time, else its priority is downgraded). We
believe nanoPU is the first system to bound the response time
of short-lived requests.

In summary, the main contributions of the nanoPU are:

1. The nanoPU’s median wire-to-wire response time
for nanoRequests, from the wire through the header-
processing pipeline, transport layer, core selection, and
thread scheduling, plus a simple loopback application and
back to the wire is just 69ns, an order of magnitude lower
latency than the best commercial NICs [20]. Without the
MAC and serial I/O, loopback latency is only 17ns.

2. Our prototype’s hardware thread scheduler continuously
monitors processing status for nanoRequests and makes de-
cisions in less than 1ns. The nanoPU sustains 20% higher
load than existing approaches, while maintaining close to
1µs 99th %ile tail response times.

3. Our complete RISC-V based prototype is available open-
source,1 and runs on AWS F1 FPGAs using Firesim [31].

4. We evaluate a suite of applications including: the MICA
key-value store [38], Raft consensus [47], set algebra and
high dimensional search inspired from the µ-Suite bench-
mark [56].

5. We demonstrate that the nanoPU can be used to implement
one-sided RDMA operations with lower latency and more
flexibility than state-of-the-art commercial RDMA NICs.

The nanoPU ideas could be deployed in a variety of ways:
by adding the low latency path to a conventional CPU, or
by designing new RPC-optimized CPUs with only the low-
latency path, or by adding the new path to embedded CPUs
on smartNICs.

2 The nanoPU Design
The nanoPU is a new NIC-CPU co-design that adds a new
fast path for nanoRequest messages requiring ultra-low and
predictable network communication latency. Figure 1 depicts

1nanoPU Artifact: https://github.com/l-nic/chipyard/wiki

240 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/l-nic/chipyard/wiki

the key design components. The nanoPU has two independent
network paths: (1) the traditional (unmodified) DMA path
to/from the host’s last-level [16] or L1 cache [57], and (2) an
accelerated fast path for nanoRequests, directly into the CPU
register file.

The traditional path can be any existing path through hard-
ware and software; hence all network applications can run on
the traditional path of the nanoPU unchanged, and perform at
least as well as they do today. The fast path is a nanosecond-
scale network stack optimized for nanoRequests. Applications
should (ideally) be optimized to efficiently process nanoRe-
quest messages directly out of the register file to fully harness
the benefits of the fast path.

Each core has its own hardware thread scheduler (HTS),
two small FIFO memories for network ingress and egress
data, and two reserved general-purpose registers (GPRs): one
as the tail of the egress FIFO for sending nanoRequest data,
and the other as the head of the ingress FIFO for receiving.
CPU cores are statically partitioned into two groups: those
running normal applications and those running nanoRequest
applications. Cores running regular applications use standard
OS software thread scheduling [27, 49, 51]; however, the OS
delegates scheduling of nanoRequest threads to HTS.

To understand the flow of the nanoPU fast path, consider the
numbered steps in Figure 1. In 1 , a packet arrives and enters
the P4-programmable PISA pipeline. In addition to standard
header processing (e.g., matching IP addresses, checking ver-
sion and checksum, and removing tunnel encapsulations), the
pipeline examines the destination layer-4 port number in the
transport header using a match-action table2 to decide if the
message should be delivered along the fast path. If so, it pro-
ceeds to 2 , else it follows the usual DMA processing path
D . In 2 , packets are reassembled into messages; a buffer
is allocated for the entire message and packet data is (poten-
tially) re-sequenced into the correct order. In 3 , the transport
protocol ensures reliable message arrival; until all data has ar-
rived, message data and signaling packets are exchanged with
the peer depending on the protocol (e.g., NDP and Homa are
both receiver driven using different grant mechanisms) (Sec-
tion 2.3). When a message has arrived, in 4 it is placed in a
per-application receive queue where it waits to be assigned to
a core by the core-selection logic (Section 2.3). When its turn
comes, in 5 , the message is sent to the appropriate per-thread
ingress FIFO on the assigned core, where it waits for HTS
(Section 2.2) to alert the core to run the message’s thread and
place the first word in the netRX register (Section 2.1). In 6 ,
the core processes the data and, if running a server application,
will typically generate a response message for the client. The
application transmits a message by issuing instructions that
write one “word” at a time to the netTX register in 7 , where
the word size is defined by the size of a CPU register, typically
64-bits (8B). These message words then flow into the global

2It is the responsibility of the the host software to configure this table
with entries for all nanoRequest processing applications.

transmit queues in 8 . Messages are split into packets in 9 ,
before departing through the egress PISA pipeline.

Next, we detail the design of the main, novel components
of the fast path: the thread-safe register file network interface,
the hardware thread scheduler (HTS), and the programmable
NIC pipeline, including transport and core selection.

2.1 Thread-Safe Register File Interface
Recent work [45] showed that PCIe latency contributes about
90% of the median wire-to-wire response time for small pack-
ets (800–900ns). Several authors have proposed integrating
the NIC with the CPU, to bring packets directly into the
cache [12, 46, 57].

The nanoPU takes this one step further and connects the
network fast path directly to the CPU core’s register file. The
high-level idea is to allow applications to send and receive
network messages by writing/reading one word (8B) at a time
to/from a pair of dedicated CPU registers.

There are several advantages to bringing packet data di-
rectly into the register file:
Message data bypasses the memory and cache hierarchy,
minimizing the time from when a packet arrives on the wire
until it is available for processing. In Section 5.2.1, we show
that this reduces median wire-to-wire response time to 69ns,
50% lower than the state-of-the-art.
Reduces variability in processing time and therefore min-
imizes tail response time. For example, there is no variable
waiting time to cross PCIe, no cache misses for message data
(messages do not enter or leave through memory) and no
IO-TLB misses (which lead to an expensive 300ns access to
the page table [45]). And because nanoRequests are buffered
in dedicated FIFOs, separate from the cache, nanoRequest
data does not compete for cache space with other application
data, further reducing cache misses for applications. Cache
misses can be expensive: A LLC miss takes about 50-100ns
to resolve and creates extra traffic on the (shared) DRAM
memory bus. DRAM access can be a bottleneck for a mul-
ticore CPU, and when congested, memory access times can
increase by more than 200% [60]. Furthermore, contention
for cache space and DRAM bandwidth is worse at network
speeds above 100Gb/s [21].
Less software overhead per message because software does
not need to manage DMA buffers or perform memory-mapped
IO (MMIO) handshakes with the NIC. In a conventional NIC,
when an application sends a message, the OS first places the
message into a DMA buffer and passes a message descriptor
to the NIC. The NIC interrupts or otherwise notifies software
when transmission completes, and software must step in again
to reclaim the DMA buffer. The register file message interface
has much lower overhead: When an application thread sends a
message it simply writes the message directly into the netTX
register, with no additional work. Section 5.2.1 shows how
this leads to a much higher throughput interface.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 241

2.1.1 How an application uses the interface

The J-Machine [13] first used the register file in 1989 for very
low latency inter-core communication, followed by the Cray
T3D [33]. The approach was abandoned because it proved
difficult to protect messages from being read/written by other
threads sharing the same core; both machines required atomic
message reads and writes [14]. As we show below, our design
solves this problem. We believe ours is the first design to
add a register file interface to a regular CPU for use in data
centers.

The nanoPU reserves two general-purpose registers (GPRs)
in the register file for network IO, which we call netRX and
netTX. When an application issues an instruction that reads
from netRX, it actually reads a message word from the head
of the network receive queue. Similarly, when an application
issues an instruction that writes to netTX, it actually writes a
message word to the tail of the network transmit queue. The
network receive and transmit queues are stored in small FIFO
memories that are connected directly to the register file.3 In
addition to the reserved GPRs, a small set of control & status
registers (CSRs, described in Section 3.4) are used for the
core and NIC hardware to coordinate with each other.

Delimiting messages. Each message that is transmitted and
received by an application begins with a fixed 8B “application
header”. On arriving messages, this header indicates the mes-
sage length (as well as the source IP address and layer-4 port
number), which allows software to identify the end of the mes-
sage. Similarly, the application header on departing messages
contains the message length (along with the destination IP
address and layer-4 port number) so that the NIC can detect
the end of the outgoing message. The programmable NIC
pipeline replaces the application header with the appropriate
Ethernet, IP, and transport headers on all transmitted packets.

Inherent thread safety. We need to prevent an errant thread
from reading or writing another thread’s messages. The
nanoPU prevents this using a novel hardware interlock. It
maintains a separate ingress and egress FIFO for each thread,
and controls access to the FIFOs so that netRX and netTX are
always mapped to the head and tail, respectively, of the FI-
FOs for the currently running thread only. Note our hardware
design ensures this property even when a previous thread
does not consume or finish writing a complete message.4 This
turned out to be a key design choice, simplifying application
development on the nanoPU; nanoRequest threads no longer
need to read and write messages atomically.

Software changes. The register file can be accessed in one
CPU cycle, while the L1 cache typically takes three cycles.

3We think of these FIFO memories as equivalent to an L1 cache, but for
network messages; both are built into the CPU pipeline and sit right next to
the register file.

4Our interlock logic would have been prohibitively expensive in the early
days; but since 1989, Moore’s Law lets us put four orders of magnitude more
gates on a chip, making the logic quite manageable (Section 5).

Application Description Response Time
p50 / p99 (µs)

MICA Implements a fast 0.40 / 0.50in-memory key-value store

Raft Runs leader-based state 3.08 / 3.26 *machine replication

Chain Repl. Runs a vertical Paxos 1.10 / 1.40 *consensus algorithm

Set Algebra Processes data-mining and 0.60 / 1.50text-analytics workloads

HD Search Analyzes and processes image, 0.80 / 1.20video, and speech data

N-Body Sim. Computes gravitational force 0.35 / N/Afor simulated bodies

INT Processing Processes network telemetry 0.13 / N/Adata (e.g., path latency)

Packet Classifier Classifies packets for intrusion 0.90 / 2.20detection (100K rules)

Othello Player Searches the Othello 0.90 / 1.70 [26]state space

One-sided RDMA Performs one-sided RDMA 0.68 / N/A *operations in software

Table 1: Example applications that have been imple-
mented on the nanoPU. These applications use small
network messages, few memory references, and cache-
resident function stack and variables (in the common
case), and are designed to efficiently process messages
out of the register file. Table indicates median and 99th
%ile wire-to-wire response time at low load. *Measured
at client.

Therefore, an application thread will run faster if it can pro-
cess data directly from the ingress FIFO by serially reading
netRX. Ideally, the developer picks a message data structure
with data arranged in the order it will be consumed—we did
this for the message processing components of the applica-
tions evaluated in Section 5.3. If an application needs to copy
long messages entirely into memory so that it can randomly
access each byte many times during processing, then the reg-
ister file interface may not offer much advantage over the
regular DMA path. Our experience so far is that, with a little
practice, it is practical to port latency-sensitive applications to
efficiently use the nanoPU register file interface. Table 1 lists
applications that have been ported to efficiently use this new
network interface and Section 4 further discusses applications
on the nanoPU.

A related issue is how, and at which stage of processing,
to serialize/deserialize (also known as marshall/unmarshall)
message data. In modern RPC applications this processing
is typically implemented in libraries such as Protobuf [52]
or Thrift [59]. Recent work pointed out that on conventional
CPUs, where network data passes through the memory hi-
erarchy, the serialize/deserialize logic is dominated by scat-
ter/gather memory-copy operations and subword-level data
transformation operations, suggesting a separate hardware
accelerator might help [50]. In the nanoPU, the memory copy
overhead involved in serialization and deserialization is little

242 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/l-nic/chipyard/blob/nanoPU-artifact-v1.0/tests-lnic/lnic-multi-core-mica.cc
https://github.com/l-nic/chipyard/blob/nanoPU-artifact-v1.0/software/raft/raft_server_riscv/main.cc
https://github.com/l-nic/chipyard/blob/nanoPU-artifact-v1.0/tests-lnic/lnic-multi-core-chain-rep.cc
https://github.com/l-nic/chipyard/blob/nanoPU-artifact-v1.0/software/set-intersection/lnic-intersect.cc
https://github.com/l-nic/chipyard/blob/nanoPU-artifact-v1.0/software/euclidean-dist/lnic-euclidean-dist.cc
https://github.com/l-nic/chipyard/blob/nanoPU-artifact-v1.0/tests-lnic/lnic-nbody-node-gpr.c
https://github.com/l-nic/chipyard/blob/nanoPU-artifact-v1.0/tests-lnic/lnic-int-path-latency.c
https://github.com/l-nic/chipyard/blob/nanoPU-artifact-v1.0/software/packet-classification/nuevomatch-cutsplit.cpp
https://github.com/l-nic/chipyard/blob/nanoPU-artifact-v1.0/tests-lnic/lnic-othello-gpr.c
https://github.com/l-nic/chipyard/blob/lnic-dev/tests-lnic/lnic-rdma-ops.c

or none; only a few copies between registers and the L1 cache
may be necessary when a working set is larger than the regis-
ter file. The remaining subword data-transformation tasks can
be done either in the applications (in software) or on the NIC
(in hardware) using a PISA-like pipeline, but still operating
at the message level. We currently take the former approach
for the applications we evaluate in Section 5.3, but intend to
explore the latter approach in future work.

2.2 Thread Scheduling in Hardware
Current best practice for low-latency applications is to either
(1) pin threads to dedicated cores [18, 51], which is very
inefficient when a thread is idle, or (2) devote one core to run
a software thread scheduler for the other cores [27, 49].

The fastest software-based thread schedulers are not fast
enough for nanoRequests. Software schedulers need to run
periodically so as to avoid being overwhelmed by interrupts
and associated overheads, which means deciding how fre-
quently they should run. If it runs too often, resources are
wasted; too infrequently and threads are unnecessarily de-
layed. The fastest state-of-the-art operating systems make
periodic scheduling decisions every 5µs [27, 49], which is
too coarse-grained for nanoRequests requiring only 1µs of
computation.

We therefore moved the nanoRequest thread scheduler to
hardware, which continuously monitors message processing
status as well as the network receive queues and makes sub-
nanoseconds scheduling decisions. Our new hardware thread
scheduler (HTS) is both faster and more efficient; a core never
sits on an idle thread when another thread with a pending
message could run.

2.2.1 How the hardware thread scheduler works

Every core contains its own scheduler hardware. When a new
thread initializes, it must register itself with its core’s HTS
by binding to a layer-4 port number and selecting a strict
priority level (0 is the highest). The layer-4 port number lets
the nanoPU hardware distinguish between threads and ensure
that netRX and netTX are always the head and tail of the
FIFOs for the currently running thread.

HTS tracks the running thread’s priority and its time spent
on the CPU core. When a new message arrives, if its desti-
nation thread’s priority is lower than or equal to the current
thread, the new message is queued. If the incoming message
is for a higher priority thread, the running thread is suspended
and the destination thread is swapped onto the core. Whenever
HTS determines that threads must be swapped, it (1) asserts
a new, NIC-specific interrupt that traps into a small software
interrupt handler (only on the relevant core), and (2) tells the
interrupt handler which thread to switch to by writing the
target’s layer-4 port number to a dedicated CSR. Our current
HTS implementation takes about 50ns to swap a previously
idle thread onto the core, measured from the moment its first
pending message arrives (Section 3.2).

If the thread to switch to belongs to a different process, the
software interrupt handler must perform additional work: no-
tably, it must change privilege modes and swap address spaces.
A typical context switch in Linux takes about 1µs [27], but
most of this time is spent making the scheduling decision [62].
Our HTS design makes this decision entirely in hardware and
the software scheduler simply needs to read a CSR to deter-
mine which thread to swap to.

The scheduling policy. HTS implements a bounded strict
priority scheduling policy to ensure that the highest priority
thread with pending work is running on the core at all times.
Threads are marked active or idle. A thread is marked
active if it is eligible for scheduling, which means it has
been registered (a port number and RX/TX FIFOs have been
allocated) and a message is waiting in the thread’s RX FIFO.
The thread remains active until it explicitly indicates that it
is idle and its RX FIFO is empty. HTS tries to ensure that
the highest priority active thread is always running.

Bounded response time. HTS supports a unique feature to
bound how long one high-priority application can hold up
another. If a priority 0 thread takes longer than t0 to pro-
cess a message, the scheduler will immediately downgrade
its priority from 0 to 1, allowing it to be preempted by a dif-
ferent priority 0 thread with pending messages. (By default,
t0 = 1µs.) We define a well-behaved application as one that
processes all of its messages in less than t0.

As a consequence, HTS guarantees an upper bound on
the response time for well-behaved applications. If a core is
configured to run at most k priority 0 application threads, each
with at most one outstanding message at a time, then the total
message processing time, tp for well-behaved applications
is bounded by: tp ≤ tn + kt0 +(k−1)tc, where tn is the NIC
latency, and tc is the context-switch latency. In practice, this
means an application developer who writes a well-behaved
application can have full confidence that no other applications
will delay it beyond a predetermined bound. If application
writers do not wish to use the time-bounded service, they may
assign all their application threads priority 1.

Writing well-behaved applications, which are able to pro-
cess all messages within a short, bounded amount of time,
is complicated by cache / TLB misses and CPU power man-
agement. Our approach so far has been to empirically verify
that certain applications are well-behaved. However, we be-
lieve that there is substantial opportunity for future research
to determine more systematic ways for developers to write
well-behaved applications. One approach may be to propose
modifications to the memory hierarchy in order to make ac-
cess latency more predictable. Another approach may be to
develop code verification tools to check whether threads meet
execution time bounds. The eBPF [19] compiler, for example,
is able to verify that a packet processing program will com-
plete eventually; we believe a similar approach can be used
to verify completion within a bounded amount of time.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 243

2.3 The nanoPU NIC Pipeline
The NIC portion of the nanoPU fast path consists of two
primary components: the programmable transport layer, and
the core-selection algorithm. We describe each in turn.

Programmable transport layer. The nanoPU provides
nanoRequest threads a reliable one-way message service. To
be fast enough, the transport layer needs to be terminated
in hardware in the NIC. For example, our prototype hard-
ware NDP implementation (Section 3.3) runs in 7ns (fixed)
per packet and at 200Gb/s for minimum size packets (64B).
Such low latency means a tight congestion-control loop be-
tween end-points, and hence more efficient use of the network.
Moreover, moving transport to hardware frees CPU cycles for
application logic [2].

We only have space to give a high level overview of our
programmable transport layer, leaving details to a follow-on
paper. At the heart of our programmable transport layer is an
event-driven, P4-programmable PISA pipeline [10, 25]. The
pipeline can be programmed to do normal header processing,
such as VXLAN, overlay tunnels, and telemetry data [35].
We enhance it for reliable message processing, including con-
gestion control, and have programmed it to implement the
NDP [24] and Homa [42] low-latency message protocols.
Network operators can program custom message protocols
tailored to their specific workloads.

Low-latency, message-oriented transport protocols are well-
suited to hardware, compared to connection-oriented, reliable
byte-stream protocols such as TCP. The NIC only needs to
maintain a small amount of state for partially delivered mes-
sages. For example, our NDP implementation, beyond storing
the actual message, keeps a per-message bitmap of received
packets, and a few bytes for congestion control. This allows
our design to be limited only by the number of outstand-
ing messages, rather than the number of open connections,
allowing large scale, highly-distributed applications across
thousands of servers.

The transport layer (Figure 1) contains buffers to convert
between the unreliable IP datagram domain and the reliable
message domain. Outbound messages pass through a packeti-
zation buffer to split them into datagrams, which may need
to be retransmitted out of order due to drops in the network.
Inbound datagrams are placed into a reassembly buffer, re-
ordering them as needed to prepare them for delivery to a
CPU core.
Selecting a CPU core. If the NIC randomly sends messages
to cores, some messages will inevitably sit in a queue waiting
for a busy core while another core sits idle. Our NIC therefore
implements a core-selection algorithm in hardware. Inspired
by NeBuLa [57], our NIC load balances nanoRequest mes-
sages across cores using the Join-Bounded-Shortest-Queue
or JBSQ(n) algorithm [36].

JBSQ(n) approximates an ideal, work-conserving single
queue policy using a combination of a single central queue,

and short bounded queues at each core, with a maximum
depth of n messages. The centralized queue replenishes the
shortest per-core queues first. JBSQ(1) is equivalent to the
theoretically ideal single-queue model, but is impractical to
implement efficiently at these speeds.

Our nanoPU prototype implements a JBSQ(2) load bal-
ancer in hardware per application. The NIC is connected to
each core using dedicated wires, and the RX FIFOs on each
core have space for at least two messages per thread running
on the core. We chose JBSQ(2) based on the communication
latency between the NIC and the cores as well as the available
memory bandwidth for the centralized queues. We evaluate
its performance in Section 5.2.3.

3 Our nanoPU Implementation
We designed a prototype quad-core nanoPU based on the
open-source RISC-V Rocket core [54]. A block diagram of
our prototype is shown in Figure 2.

Our prototype extends the open-source RISC-V Rocket-
Chip SoC generator [3], adding 4,300 lines of Chisel [6]
to the code base. The Rocket core is a simple five-stage,
in-order, single-issue processor. We use the default Rocket
core configuration: 16KB L1 instruction and data caches,
a 512KB shared L2 cache, and 16GB of external DRAM
memory. Everything shown in Figure 2, except the MAC and
Serial IO, is included in our prototype and is available as
an open-source, reproducible artifact.5 Our prototype does
not include the traditional DMA path between the NIC and
memory hierarchy. Instead, we focus our efforts on building
the nanoPU fast path for nanoRequests.

To improve simulation speed, we do not run a full operat-
ing system on our prototype, but rather just enough to boot
the system, initialize one or more threads on the cores, and
perform context switches between threads when instructed to
do so by the hardware thread scheduler (HTS). In total, this
consists of about 1,200 lines of C code and RISC-V assembly
instructions. All applications run as bare-metal applications
linked with the C standard library.

The nanoPU design is intended to be fabricated as an ASIC,
but we use an FPGA to build the initial prototype. As we
will discuss further in Section 5, our prototype runs on AWS
F1 FPGA instances, using the Firesim [31] framework. Our
prototype adds about 15% more logic LUTs to an otherwise
unmodified RISC-V Rocket core with a traditional DMA NIC.

3.1 RISC-V Register File Network Interface
The RISC-V Rocket core required surprisingly few changes
to add the nanoPU register file network interface. The main
change, naturally, involves the register file read-write logic.
Each core has 32 GPRs, each 64-bits wide, and we reserve two
for network communication (shared by all threads). Applica-
tions must be compiled to avoid using the reserved GPRs for

5nanoPU Artifact: https://github.com/l-nic/chipyard/wiki

244 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/l-nic/chipyard/wiki

Programmable NIC

Ethernet
MAC +
Serial

IO

Rocket Cores 0 to 3

HW Priority Thread Sched.

netRX
netTX

R
e
g
i
s
t
e
r
s

Local
RX/TXQs L

1
C

M
a
i
n

M
e
m
o
r
y

RISC-V CPU

L
2
C

App reads a message

App writes a message

26ns 5.3ns 2.2ns 3.1ns

0.9ns0.9ns4.6ns26ns

PISA
Pipeline

Packet

Message
Global
RX/TXQs

HW NDP Transport

Loopback Latency = 17ns

Wire-to-Wire Latency = 69ns

HW JBSQ
Core Sel.

Ethernet MAC

Sp
li

tt
er

Ar
bi

te
r

De
cr
yp
t

En
cr
yp
t

PISA Pipeline

Tr
an
sp
or
t

Core0

Co
nt
ex
t

Pkt Out

Msg Out

Pkt In

Msg In

Th
re

ad
Sc

he
du

le
r

NI
C

Pa
ck

et
Da

ta
pa

th
NI

C
Me

ss
ag

e
Da

ta
pa

th

Et
he

rn
et

 M
AC

Splitter

Arbiter

Encrypt

Decrypt

MA
U
Pi
pe
li
ne

Transport

Ethernet MAC

Sp
li

tt
er

Arbiter

EncryptDe
cr
yp
t

MAU PipelineTr
an
sp
or
t

CPU

head
tail

Re
gi

st
er

s

FIFOs

Ethernet MAC

Sp
li

tt
er

Arbiter

EncryptDe
cr
yp
t

MAU PipelineTr
an
sp
or
t

CPU

head
tail

Re
gi

st
er

s

FIFOs

Ethernet MAC

Sp
li

tt
er

Arbiter

EncryptDe
cr
yp
t

MAU PipelineTr
an
sp
or
t

CPU

head
tail

Re
gi

st
er

s

FIFOs

CP
U0

CP
U1

CP
U2

Et
he

rn
et

 M
AC

Splitter

Arbiter

Encrypt

Decrypt

MA
U

Pi
pe

li
ne

Transport

CP
U he
ad

ta
il

Registers
FI

FO
s

Control

Pk
t
Ou
t

Ms
g
Ou
t

Pk
t
In

Ms
g
In

Thread
Scheduler

NIC
Datapath

NIC-Core
Interface

Et
he

rn
et

 M
AC

Splitter

Arbiter

Encrypt

Decrypt

MA
U
Pi
pe
li
ne

Transport

Ethernet MAC

Sp
li

tt
er

Arbiter

EncryptDe
cr
yp
t

MAU PipelineTr
an
sp
or
t

CPU

head
tail

Re
gi

st
er

s

FIFOs

Ethernet MAC

Sp
li

tt
er

Arbiter

EncryptDe
cr
yp
t

MAU PipelineTr
an
sp
or
t

CPU

head
tail

Re
gi

st
er

s

FIFOs

Ethernet MAC

Sp
li

tt
er

Arbiter

EncryptDe
cr
yp
t

MAU PipelineTr
an
sp
or
t

CPU

head
tail

Re
gi

st
er

s

FIFOs

CP
U0

CP
U1

CP
U2

Et
he

rn
et

 M
AC

Splitter

Arbiter

Encrypt

Decrypt

MA
U
Pi
pe
li
ne

Transport

Ethernet MAC

Sp
li

tt
er

Arbiter

EncryptDe
cr
yp
t

MAU PipelineTr
an
sp
or
t

CPU

head
tail

Re
gi

st
er

s

FIFOs

Ethernet MAC

Sp
li

tt
er

Arbiter

EncryptDe
cr
yp
t

MAU PipelineTr
an
sp
or
t

CPU

head
tail

Re
gi

st
er

s

FIFOs

Ethernet MAC

Sp
li

tt
er

Arbiter

EncryptDe
cr
yp
t

MAU PipelineTr
an
sp
or
t

CPU

head
tail

Re
gi

st
er

s

FIFOs

CP
U0

CP
U1

CP
U2

Core1 Core2

CP
Us

 w
it

h
Na

no
ke

rn
el

 &
Na

no
ta

sk
s

Co
nt
ex
t
FI
FO
s

(a
)

(b
)

(c
)

(d
)

Co
nt
ex
t

CS
Rs

L-
NI

C

CSRs

Figure 2: Our nanoPU prototype latency breakdown. Total wire-to-wire latency for an 8B message (72B packet) is 69ns.

temporary storage. Fortunately, gcc makes it easy to reserve
registers via command-line options [48].

The core also required changes to the control logic that
handles pipeline flushes. A pipeline flush can occur for a
number of reasons (e.g., a branch misprediction). On a tradi-
tional five-stage RISC-V Rocket core, architectural state is
not modified until an instruction reaches the write-back stage
(Rocket Stage 5). However, with the addition of our network
register file interface, reading netRX now causes a state mod-
ification (FIFO read) in the decode stage (Rocket Stage 2).
The destructive read operation must be undone when there is
a pipeline flush. The CPU pipeline depth is an upper bound
on how many read operations need to be undone; in our case,
at most two reads require undoing. It is straightforward to
implement a FIFO queue supporting this operation.

3.2 Bounded Thread Scheduling in Hardware
The nanoPU core implements thread scheduling in hardware,
as described in Section 2.2. The number of threads that can
run on each core is primarily determined by the amount of
buffering available for the local RX/TX queues. In order to
implement the JBSQ(2) core selection policy, as described
in Section 2.3, the local RX queue for each thread must be
able to hold at least two maximum size messages. We use a
maximum message size of 2KB (two packets)6 and allocate
16KB of buffer for the local RX queues. Therefore, the pro-
totype supports up to four threads on each core; each thread
can be configured with a unique priority value. Priority 0 has
a configurable maximum message processing time in order to
implement the bounded priority thread scheduling policy. We
added a new thread-scheduling interrupt to the RISC-V core,
along with an accompanying control & status register (CSR)
set by HTS to tell the interrupt’s trap handler which thread it
should run next. When processing nanoRequests, we disable
all other interrupts to avoid unnecessary interrupt handling

6The maximum message size is a configurable parameter of the architec-
ture and we have experimented with messages as long as 38 packets.

overheads.
We define the context-switch latency to be the time from

when the scheduler fires the interrupt to when the first in-
struction of the target thread is executed. Our prototype has a
measured context-switch latency of 160 cycles, or 50ns on a
3.2GHz CPU. This is much faster than a typical Linux con-
text switch, partly because the thread scheduling decision is
offloaded to hardware, and partly because the core only runs
bare-metal applications in the same address space with the
highest privilege mode. Therefore, nanoPU hardware thread
scheduling in a Linux environment would be less efficient
than our bare-metal prototype.

3.3 Prototype NIC Pipeline
The NIC portion of the nanoPU fast path consists of the pro-
grammable transport module and the core selection module.
Our prototype implements both.
Transport hardware. We configured our programmable
transport module to implement NDP [24] entirely in hardware.
We chose NDP because it has promising low-latency perfor-
mance, and is well-suited to handle small RPC messages (the
class of messages we are most interested in accelerating, i.e.,
nanoRequests). However, the nanoPU does not depend on
NDP. As explained in Section 2.3, our NIC transport layer
is programmable. It has already been shown to support sev-
eral other protocols, including Homa [42]. We evaluate our
hardware NDP implementation in Section 5.2.3.
JBSQ hardware. As explained in Section 2.3, our NIC im-
plements JBSQ(2) [36] to load balance messages across cores
on a per-application basis. JBSQ(2) is implemented using
two tables. The first maps the message’s destination layer-4
port number to a per-core bitmap, indicating whether or not
each core is running a thread bound to the port number. The
second maps the layer-4 port number to a count of how many
messages are outstanding at each core for the given port num-
ber. When a new message arrives, the algorithm checks if
any of the cores that are running an application thread bound

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 245

to the destination port are holding fewer than two of the ap-
plication’s messages. If so, it will immediately forward the
message to the core with the smallest message count. If all
target cores are holding two or more messages for this port
number, the algorithm waits until one of the cores indicates
that it has finished processing a message for the destination
port. It then forwards the next message to that core. We evalu-
ate our JBSQ implementation in Section 5.2.3.

3.4 The nanoPU HW/SW Interface
To illustrate how software on the nanoPU core interacts with
the hardware, Listing 1 shows a simple bare-metal loopback-
with-increment program in RISC-V assembly. The program
continuously reads 16B messages (two 8B integers) from
the network, increments the integers, and sends the messages
back to their sender. The program details are described below.

The entry procedure binds the thread to a layer-4 port
number at the given priority level by first writing a value to
both the lcurport and lcurpriority CSRs, then writing
the value 1 to the lniccmd CSR. The lniccmd CSR is a bit-
vector used by software to send commands to the networking
hardware; in this case, it is used to tell the hardware to allocate
RX/TX queues both in the core and the NIC for port 0 with
priority 0. The lniccmd CSR can also be used to unbind a
port or to update the priority level.

The wait_msg procedure waits for a message to arrive in
the core’s local RX queue by polling the lmsgsrdy CSR until
it is set by the hardware.7 While it is waiting, the application
tells HTS that it is idle by writing to the lidle CSR during the
polling loop. The scheduler uses the idle signal to evict idle
threads in order to schedule a new thread that has messages
waiting to be processed.

The loopback_plus1_16B procedure simply swaps the
source and destination addresses by moving the RX appli-
cation header (the first word of every received message, see
Section 2.1) from the netRX register to the netTX register,
shown on line 19 (Listing 1), and thus the RX application
header becomes the TX application header.8 Upon writing
the TX application header, the hardware ensures that there
is sufficient buffer space for the entire message; otherwise,
it generates an exception which should be handled by the
application accordingly. The procedure then increments ev-
ery integer in the received message and appends them to the
message being transmitted. After the procedure has finished
processing the message, it tells HTS it is done by writing to
the lmsgdone CSR. The scheduler uses this write signal to:
(1) reset the message processing timer for the thread, and (2)
tell the NIC to dispatch the next message for this application

7It is the responsibility of the application to ensure that it does not try to
read netRX when the local RX queue is empty; doing so results in undefined
behavior.

8Note that this instruction also sets the TX message length to be equal to
the RX message length because the message length is included in the TX/RX
application headers.

1 // Simple loopback & increment application
2 entry:
3 // Register port number & priority with NIC
4 csrwi lcurport , 0
5 csrwi lcurpriority , 0
6 csrwi lniccmd , 1
7

8 // Wait for a message to arrive
9 wait_msg:

10 csrr a5, lmsgsrdy
11 bnez a5, loopback_plus1_16B
12 idle:
13 csrwi lidle , 1 // app is idle
14 csrr a5, lmsgsrdy
15 beqz a5, idle
16

17 // Loopback and increment 16B message
18 loopback_plus1_16B:
19 mv netTX , netRX // copy app hdr: rx to tx
20 addi netTX , netRX , 1 // send word one + 1
21 addi netTX , netRX , 1 // send word two + 1
22 csrwi lmsgdone , 1 // msg processing done
23 j wait_msg // wait for the next message

Listing 1: Loopback with increment. A nanoPU
assembly program that waits for a 16B message,
increments each word, and returns it to the sender.

to the core.9 Finally, the procedure waits for the next message
to arrive.

3.5 How It All Fits Together
Next, we walk through a more representative nanoRequest
processing application, written in C, to compute the dot
product of a vector stored in memory and a vector con-
tained in arriving RPC request messages. Listing 2 is the
C code for the routine, based on a small library of C macros
(lnic_*) we wrote to allow applications to interact with the
nanoPU hardware (netRX and netTX GPRs, and the CSRs).
The lnic_wait() macro corresponds to the wait_msg pro-
cedure on lines 9-15 in Listing 1. The lnic_read() and
lnic_write_*() macros generate instructions that either
read from or write to netRX or netTX using either registers,
memory, or an immediate; and the lnic_msg_done() macro
writes to the lmsgdone CSR, corresponding to line 22 of List-
ing 1. Our library also includes other macros as well such as
lnic_branch() which branches control flow based on the
value in netRX.

The dot product C application waits for a message to arrive
then extracts the application header (the first word of every
message), followed by the message type in the second word.
It checks that it is a DATA_TYPE message, and reads the third
word to know how many 8B words the vector contains. The
vector identifies the in-memory weight to use for each word

9A future implementation may also want to use this signal to flush any
unread bytes of the current message from the local RX queue. Doing so
would guarantee that the next read to netRX would yield the application
header of the subsequent message and help prevent application logic from
becoming desynchronized with message boundaries.

246 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

1 while (1) {
2 // Wait for a msg to arrive
3 lnic_wait();
4 // Extract application header from RX msg

and check msg type
5 app_hdr = lnic_read();
6 if (lnic_read() != DATA_TYPE) {
7 printf("Expected Data msg.\n");
8 return -1;
9 }

10 // Compute the dot product of the msg
vector with in-memory data

11 uint64_t num_words = lnic_read();
12 uint64_t result = 0;
13 for (i = 0; i < num_words; i++) {
14 uint64_t idx = lnic_read();
15 uint64_t word = lnic_read();
16 result += word * weights[idx];
17 }
18 // Send response message
19 lnic_write_r((app_hdr & (IP_MASK |

PORT_MASK)) | RESP_MSG_LEN);
20 lnic_write_i(RESP_TYPE);
21 lnic_write_r(result);
22 lnic_msg_done();
23 }

Listing 2: Example nanoPU application that
computes the dot product between a vector in a
network message and in-memory weights.

when computing the dot product. Note that the application
processes message data directly out of the register file and
message data never needs to be copied into memory, allowing
it to run faster than on a traditional system. Finally, the appli-
cation sends a response message back to the sender containing
the dot product.

4 The nanoPU Applications
Applications that will benefit most from using the nanoPU
fast path exhibit one or both of the following characteristics:
(i) strict tail response time requirements for network mes-
sages; or (ii) short (µs-scale) on-core service times. It should
come as no surprise that applications with strict tail response
time requirements will benefit from using the nanoPU fast
path. Enabling low tail response time was one of our primary
goals that guided many of the design decisions described in
Section 2. For the latter, when an application’s on-core ser-
vice time is short, any CPU cycles spent sending or receiving
network messages become comparatively more expensive.
The nanoPU’s extremely low per-message overheads help to
ensure that these applications are able to dedicate close to
100% of CPU cycles to performing useful processing and thus
achieve their maximum possible message processing through-
put. Furthermore, the nanoPU can also help to reduce on-core
service times by reducing pressure on the cache-hierarchy
and allowing message data to be processed directly out of the
register file. Another consequence of having short on-core
service times is that the end-to-end completion time of each
RPC becomes dominated by communication latency. By mov-

ing the entire network stack into hardware and by using the
register file interface, the nanoPU fast path efficiently reduces
communication latency and, hence, the RPC completion time.
Therefore, the relative benefit provided by the nanoPU will
increase as on-core service time decreases. An application’s
on-core service time does not necessarily need to be sub-1µs
in order to benefit from using the nanoPU. The following
section describes a few specific classes of applications that
we believe are well-suited for the nanoPU.

4.1 Example Application Classes

µs-scale (or ns-scale) Services. An increasing number of
datacenter applications are implemented as a collection of
independent software modules called microservices. It is com-
mon for a single user request to invoke microservices across
thousands of servers. At such large scale, the tail RPC re-
sponse time dominates the end-to-end performance of these
applications [17]. Furthermore, many microservices exhibit
very short on-core service times; a key-value store is one such
example that has sub-1µs service time. Therefore, these ap-
plications exhibit both of the characteristics described in the
previous section and are ideal candidates to accelerate with
the nanoPU.
Programmable One-sided RDMA. Modern NICs support
RDMA for quick read and write access to remote mem-
ory. Some NICs support further “one-sided” operations in
hardware: a single RDMA request leads to very low latency
compare-and-swap, or fetch-and-add. It is natural to consider
extending the set of one-sided operations to further acceler-
ate remote memory operations [40, 55], for example indirect
read (dereferencing a memory pointer in one round-trip time,
rather than two), scan and read (scan a small memory re-
gion to match an argument and fetch data from a pointer
associated with the match), return max, and so on. Changing
fixed-function NIC hardware requires a new hardware design
and fork-lift upgrade, and so, instead, Google Snap [40] im-
plements a suite of custom one-sided operations in software
in the kernel. This idea would run much faster on the nanoPU,
for example as an embedded core on a NIC, and could im-
plement arbitrary one-sided RDMA operations in software
(Section 5.3).
High Performance Computing (HPC) and Flash Bursts.
HPC workloads (e.g., N-body simulations [34]) as well as
flash bursts [37], a new class of data center applications that
utilize hundreds or thousands of machines for a short amount
of time (e.g., one millisecond), are both examples of highly
parallelizable application classes that are partitioned into fine-
grained tasks distributed across many machines. These appli-
cations tend to be very communication intensive and spend
a significant amount of time sending and receiving small
messages [37]. We believe that the nanoPU’s extremely low
per-message overheads and low communication latency can
help to accelerate these applications.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 247

Network Function Virtualization (NFV). NFV is a well-
known class of applications with µs-scale on-core service
times [60, 66]. The nanoPU’s low per-message overhead, reg-
ister file interface, and programmable PISA pipelines allow
it to excel at stream processing network data and thus is an
excellent platform for deploying NFV applications.

5 Evaluation

Our evaluations address the following four questions:
1. How does the performance of the nanoPU register file

interface compare to a traditional DMA-based network
interface (Section 5.2.1)?

2. Is the hardware thread scheduler (HTS) able to provide
low tail latency under high load and bounded tail latency
for well-behaved applications (Section 5.2.2)?

3. How does our prototype NIC pipeline (i.e., transport and
core selection) perform under high incast and service-time
variance (Section 5.2.3)?

4. How do real applications perform using the nanoRequest
fast path (Section 5.3)?

5.1 Methodology

We compare our nanoPU prototype against an unmodified
RISC-V Rocket core with a standard NIC (IceNIC [31]),
which we call a traditional NIC. The traditional NIC is imple-
mented in the same simulation environment as our nanoPU
prototype and performs DMA operations directly with the
last-level (L2) cache. The traditional NIC does not support
hardware-terminated transport or multi-core network applica-
tions, however, an ideal traditional NIC would support both
of these. Therefore, for our evaluations, we do not implement
transport in software for the traditional NIC baseline; we omit
the overhead that would be introduced by this logic.

Our evaluations ignore the overheads of translating ad-
dresses because we run bare-metal applications using phys-
ical addresses. When using virtual memory, the traditional
design would perform worse than reported here, because the
message buffer descriptors would need to be translated result-
ing in additional latency, and more TLB misses. There is no
need to translate addresses when processing nanoRequests
from the register file.

Benchmark tools. We use two different cycle-accurate sim-
ulation tools to perform our evaluations: (1) the Verila-
tor [63] software simulator, and (2) the Firesim [31] FPGA-
accelerated simulator. Firesim enables us to run large-scale,
cycle-accurate simulations with hundreds of nanoPU cores
using FPGAs in AWS F1 [1]. The FPGAs run at 90MHz,
and we simulate a target clock rate of 3.2GHz—all reported
results are in terms of this target clock rate. The simulated
servers are connected by C++ switch models running on the
AWS x86 host CPUs.

5.2 Microbenchmarks
5.2.1 Register file interface

Loopback response time. Figure 2 shows a breakdown of the
latency through each component for a single 8B nanoRequest
message (in a 72B packet) measured from the Ethernet wire
through a simple loopback application in the core, then back to
the wire (first bit in to last bit out).10 As shown, the loopback
response time through the nanoPU fast path is only 17ns, but
in practice we also need an Ethernet MAC and serial I/O,
leading to a wire-to-wire response time of 69ns.

For comparison, Figure 3 shows the median loopback re-
sponse time for both the nanoPU fast path and the traditional
design for different messages sizes. For an 8B nanoRequest,
the traditional design has a 51ns loopback response time, or
about 3× higher than the nanoPU. 12ns (of the 51ns) are
spent performing memcpy’s to swap the Ethernet source and
destination addresses, something that is unnecessary for the
nanoPU, because it is handled by the NIC hardware. The
speedup of the nanoPU fast path decreases as the message
size increases because the response time becomes dominated
by store-and-forward delays and message-serialization time.

If instead the traditional NIC placed arriving messages di-
rectly in the L1 cache, as NeBuLa proposes [57], the loopback
response time would be faster, but the nanoPU fast path would
still have 50% lower response time for small nanoRequests.
Loopback throughput. Figure 4 shows the throughput of
the simple loopback application running on a single core
for both the nanoPU fast path and the traditional NIC. The
traditional NIC processes batches of 30 packets, which fit
comfortably in the LLC. Batching allows the traditional NIC
to overlap computation (e.g., Ethernet address swapping) with
NIC DMA send/receive operations.

Throughput is dominated by the software overhead to pro-
cess each message. For the register file interface, the software
overhead is: read the lmsgsrdy CSR to check if a message
is available for processing, read the message length from
the application header, and write to the lmsgdone CSR after
forwarding the message. For the traditional design, the soft-
ware overhead is: perform MMIO operations to pass RX/TX
descriptors to the NIC and to check for RX/TX DMA com-
pletions, and memcpy’s to swap the Ethernet source and desti-
nation addresses.

Because of lower overheads, the application has 2–7×
higher throughput on the nanoPU than on the traditional NIC.
For small 8B messages (72B packets), the nanoPU loopback
application achieves 68Gb/s, or 118Mrps – 7× higher than the
traditional system. For 1KB messages, the nanoPU achieves
a throughput of 166Gb/s (83% of the line-rate). When we add
the per-packet NDP control packets sent/received by the NIC,
the 200Gb/s link is completely saturated.

10Our prototype does not include MAC & Serial IO, so we add real values
measured on a 100GE switch (with Forward Error Correction disabled).

248 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 3: Loopback median re-
sponse time vs. message length;
nanoPU fast path and traditional.

Figure 4: Loopback throughput vs.
message length; nanoPU fast path
and traditional.

Figure 5: Loopback-with-increment
throughput vs. message length;
nanoPU fast path and traditional.

Figure 6: Dot-product throughput
speedup for various vector sizes;
nanoPU fast path (naive & optimal)
relative to traditional NIC.

Figure 7: 99th %ile response time
vs load; hardware thread sched-
uler (HTS) vs. traditional timer-
interrupt driven scheduler (TIS).

Figure 8: 99th %ile response time
vs load for well-behaved and mis-
behaved threads, with and without
bounded message processing time.

Stateless nanoRequest jobs. The nanoPU is well-suited for
compute-intensive applications that transform the data carried
by self-contained nanoRequests. We use a very simple bench-
mark application that increments each word of the message by
one and forwards the message back into the network; similar
to the program described in Section 3.4.

Figure 5 shows that the nanoPU accelerates the throughput
of this application by up to 10×. NanoRequest data is read
from the register file and passed directly through the ALU;
no memory operations are required at all. On the other hand,
when using the traditional NIC, each word of the message
must be read from the last-level cache (LLC), passed through
the ALU, and the final result is written back to memory. If
instead the traditional NIC loaded words into the L1 cache, as
in [57], we estimate a throughput about 1.3× faster than via
the LLC. This would still be 7.5× slower than the nanoPU fast
path. In Section 5.3, we will compare more realistic bench-
marks for real applications.

Stateful nanoRequest jobs. These are applications that pro-
cess both message data and local memory data. Similar to the
example described in Section 3.5, our simple microbenchmark
computes the dot product of two vectors of 64-bit integers,
one from the arriving message and a weight vector in local
memory. The weight vector is randomly chosen from enough
vectors to fill the L1 cache (16kB).

There are two ways to implement the application on the
nanoPU. The optimal method is to process each message
word directly from the register file, multiplying and accumu-
lating each word with the corresponding weight value from
memory. The naive method copies the entire message from
netRX into memory before computing the dot product with

the weight vector. The traditional design processes messages
in batches of 30, to overlap dot-product computation with
DMA operations.

Figure 6 shows the throughput speedup of the optimal
and naive methods relative to the traditional application, for
different message lengths.

• Small messages: For small messages below 100bytes, the
nanoPU is 4–5× faster because of fewer per-message soft-
ware overheads.

• Large messages: For large vectors throughput is limited by
the longer dot product computation time. The optimal appli-
cation consistently doubles throughput by keeping message
data out of the L1 cache and reducing cache misses. The
naive application is slowed by the extra copy, and about
twice as many L1 data cache misses. The traditional appli-
cation has 10× as many L1 data cache misses as optimal
because message data must be fetched from the LLC, which
pollutes the L1 cache, evicting weight data. If we speed up
the traditional NIC by placing message data directly in the
L1 cache, as NeBuLa proposes [57], we estimate the tra-
ditional design would run 1.5× faster for large messages.
Optimal would still be 30% faster for large messages.

The benefits are clear when an application processes mes-
sage data directly from the netRX register. While this may
seem like a big constraint, we have found that it is gener-
ally feasible and natural to design applications this way. We
demonstrate example applications in Section 5.3.

5.2.2 Hardware thread scheduling

Next, we evaluate how much the hardware thread scheduler
(HTS) can reduce tail response time under high load.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 249

Methodology. We evaluate tail response time under load by
connecting a custom (C++) load generator to our nanoPU
prototype in Firesim [31]. It generates nanoRequests with
Poisson inter-arrival times, and measures the end-to-end re-
sponse time.
Priority thread scheduling. We compare our hardware
thread scheduler (HTS) against a more traditional timer-
interrupt driven scheduler (TIS) interrupted by the kernel
every 5µs to swap in the highest-priority active thread. We
run both schedulers in hardware on our prototype.11 TIS uses
a 5µs timer interrupt to match the granularity of state-of-the-
art low-latency operating systems [27, 49].

We evaluate both schedulers when they are scheduling two
threads: one with priority 0 (high) and one with priority 1
(low). The load generator issues 10K requests for each thread,
randomly interleaved, each with an on-core service time of
500ns (i.e., an ideal system will process 2Mrps).

Figure 7 shows the 99th %ile tail response time vs load for
both thread scheduling policies, with a high and low priority
thread. HTS reduces tail response time by 4× and 6.5× at
high and low load, respectively; and can sustain 96% load.12

Bounded message-processing time. HTS is designed to
bound the tail response time of well-behaved applications,
even when they are sharing a core with misbehaving applica-
tions. To test this, we configure a core to run a well-behaved
thread and a misbehaving thread, both configured to run at
priority 0. All requests have an on-core service time of 500ns,
except when a thread misbehaves (once every 100 requests),
in which case the request processing time increases to 5µs.

Figure 8 shows the 99th %ile tail response time vs load
for both threads with, and without, the bounded message pro-
cessing time feature enabled. When enabled, if a priority 0
thread takes longer than 1µs to process a request, HTS lowers
its priority to 1. When disabled, all requests are processed by
the core in FIFO order.

We expect an application with at most one message at a
time in the RX queue, to have a tail response time bounded by
2 · 43ns+ 17ns+ 2 · 1000ns+ 50ns = 2.15µs. This matches
our experiments: With the feature enabled, the tail response
time of the well-behaved thread never exceeds 2.1µs, until the
offered load on the system exceeds 100% (1.9 Mrps).13 HTS
lowers the priority of the misbehaving application the first
time it takes longer than 1µs to process a request. Hence, the
well-behaved thread quickly becomes strictly higher priority
and its 500ns requests are never trapped behind a long 5µs
one. Note also that by bounding message processing times,
shorter requests are processed first, queues are smaller and

11TIS would run in software in practice, likely on a separate core, and
would therefore be slower than in hardware.

12Our prototype does not currently allocate NIC buffer space per-
application, causing high-priority requests to be dropped when the low-
priority queue is fill. This will be fixed in the next version.

13This is despite our Poisson arrival process occasionally placing more
than one message in the RX queue.

the system can sustain higher load.

5.2.3 Prototype NIC pipeline

Hardware NDP transport. We verify our hardware NDP
implementation by running a large 80-to-1 incast experiment
on Firesim, with 324 cores simulated on 81 AWS F1 FPGAs.
All hosts are connected to one simulated switch; 80 clients
send a single packet message to the same server at the same
time. The switch has insufficient buffer capacity to store all
80 messages and hence some are dropped. When NDP is
disabled, dropped packets are detected by the sender using
a timeout and therefore the maximum latency through the
network is dictated by the timeout interval. When NDP is
enabled, the dropped messages are quickly retransmitted by
NDP’s packet trimming and NACKing mechanisms, lowering
maximum network latency by a factor of three.
Hardware JBSQ core selection. We evaluate our JBSQ im-
plementation using a bimodal service-time distribution: 99.5%
of nanoRequests have a service time of 500ns and 0.5% have
a service time of 5µs. When using a random core assignment
technique, like receive side scaling (RSS), to balance requests
across four cores, short requests occasionally get queued be-
hind long requests, resulting in high tail response time. With
JBSQ enabled, tail response time is reduced 5× at low load,
and can sustain 15% higher load than RSS.

5.3 Application Benchmarks
As shown in Table 1, we implemented and evaluated many
applications on our nanoPU prototype. Below, we present the
evaluation results for a few of these applications.
MICA. We ported the MICA key-value store [38] and com-
pared it running on the nanoPU and traditional NIC designs.
MICA is implemented as a library with an API that allows ap-
plications to GET and SET key-value pairs. Traditionally, this
API uses in-memory buffers to pass key-value pairs between
the MICA library and application code. The naive way to port
MICA to the nanoPU is to copy key-value pairs in network
messages between the register file and in-memory buffers,
using the MICA library without modification. However, we
find it more efficient to modify the MICA library to read and
write the register file directly when performing GET and SET
operations. This avoids unnecessary memcpys in the MICA
library. Optimizing the MICA library to use the register file
only required changes to 36 lines of code.

Our evaluation stores 10k key-value pairs (16B keys and
512B values). The load generator sends a 50/50 mix of read-
/write nanoRequest queries with keys picked uniformly. Fig-
ure 9 compares the 99th %ile tail response time vs load for the
traditional, nanoPU naive, and nanoPU optimized versions
of this application. The naive nanoPU implementation out-
performs the traditional implementation, likely because it is
able to use an L1-cache resident in-memory buffer rather than
an LLC-resident DMA buffer. The optimized nanoPU imple-

250 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 9: MICA KV store: 99th %ile tail response time
for READ and WRITE requests.

Figure 10: Set intersection: 99th %ile tail response time.

mentation is able to achieve about 30% higher throughput
and lower response times by efficiently using the register file
interface when processing network messages.
Raft. Raft is a widely-used consensus algorithm for dis-
tributed applications [47]. We evaluate a production grade
version of Raft [53] using a 16B-key, 64B-value MICA key-
value store state machine, with three servers and one client
connected to a single switch. The switch has a forwarding
latency of 300ns (typical of modern cut-through commercial
switch ASICs [58]) and all links have a latency of 43ns. Al-
though our Raft cluster correctly implements leader election,
can tolerate server failure, and our client can automatically
identify a new Raft leader, we evaluate our Raft cluster in the
steady-state, failure-free case, with a single leader and three
fully-functioning replicas.

We define the response time to be from when the client
issues a three-way replicated write request to the Raft cluster,
until the client hears back from the cluster leader that the
request has been fully replicated and committed across all
three Raft servers. In 10K trials, the median response time was
3.08µs, with a 3.26µs 99th %ile tail response time. eRPC [28],
a high performance, highly-optimized RPC library reports a
5.5µs median and 6.3µs 99th %ile tail response time — about
a factor of two slower.
Set algebra. In information retrieval systems, set intersec-
tions are commonly performed for data mining, text analytics,
and search. For example, Lucene [8] uses a reverse index
that maps each word to a set of documents that contain the
word. Searches yield a document set for each search word,
then compute the intersection of these sets.

We created a reverse index of 100 Wikipedia [65] articles
with 200 common English words. Our load generator sends
search requests with 1-4 words chosen from a Zipf distribu-
tion based on word frequency. Porting the set intersection

One-sided RDMA Latency (ns)
Median 90th %ile

Read 678 680
Write 679 686

Compare-and-Swap 687 690
Fetch-and-Add 688 692
Indirect Read 691 715

Table 2: Median and 90th %ile latency of one-sided
RDMA operations implemented on the nanoPU. Mea-
surements are made at the client, and the one-way latency
through the switch and links is 300ns.

application to the nanoPU was straight forward. The only
difference between the nanoPU and traditional versions of the
applications is the logic to send and receive network messages
(∼50 LOC). We did not need to make any modifications to
the application logic that computes the intersection between
sets of document IDs.

Figure 10 shows the tail response time for searches. The
traditional design has a low-load tail response time of 1.7µs,
compared to 1.4µs on a single nanoPU core. JBSQ helps to
ensure that long running requests do not get stuck behind
short ones. With JBSQ enabled for four cores, the 99th %ile
tail response time remains low until 7Mrps.
One-sided RDMA operations. As described in Section 4.1,
the nanoPU can implement flexible, low latency one-sided
RDMA operations. As a baseline, the median end-to-end
latency of one-sided operations between two hosts using state-
of-the-art RDMA NICs, connected by a single switch with
a port-to-port latency of 300ns is about 2µs [28]. 14 Table 2
shows the median and 90% tail latency of several one-sided
RDMA operations implemented on the nanoPU, using the
same topology as the baseline. The median latency, measured
by the nanoPU client, is 680-690ns with a 90% tail latency
of approximately 700ns, 65% lower latency than state-of-
the-art RDMA NICs. Most of the latency reduction is from
eliminating the traversal of PCIe on the client and server.

In addition to the standard one-sided RDMA operations
(read, write, compare-and-swap, fetch-and-add) we also im-
plement indirect read, in which the server simply dereferences
a pointer to determine the actual memory address to read. This
operation would require two network round trips on a standard
RDMA NIC; on the nanoPU, it takes only a few nanoseconds
longer than a standard read.

6 Discussion

nanoPU deployment possibilities. We believe there are a
number of ways to deploy nanoPU ideas, in addition to a
modified regular CPU. For example, the nanoPU fast path

14Note that when using an ARM-based smartNIC, such as the Mellanox
BlueField [41], the time to traverse the embedded cores will increase this
end-to-end latency by at least a factor of two [39, 61].

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 251

could be added to embedded CPUs on smartNICs for the
data center [5, 41, 44]. This could be a less invasive way to
introduce nanoPU ideas without needing to modify server
CPUs. A more extreme approach would be to build a nanoPU
domain-specific architecture explicitly for nanoRequests. For
example, it would be practical today to build a single chip
512-core nanoPU, similar to Celerity [15], with one hundred
100GE interfaces, capable of servicing RPCs at up to 10Tb/s.
In-order execution. Our prototype is based on a simple 5-
stage, in-order RISC-V Rocket core and required only minor
modifications to the CPU pipeline. An out-of-order processor
would require bigger changes to ensure that words read from
netRX are delivered to the application in FIFO order.

7 Related Work

Low-latency RPCs (software). Recent work focuses on al-
gorithms to choose a core by approximating a single-queue
system using work-stealing (like ZygOS [51]) or preempting
requests at microsecond timescales (Shinjuku [27]). However,
the overheads associated with inter-core synchronization and
software preemption make these approaches too slow and
coarse-grained for nanoRequests.

eRPC [28] takes the other extreme to the nanoPU and
runs everything in software, and through clever optimizations,
achieves impressively low latency on a commodity server for
the common case. eRPC has good median response times, but
its common-case optimizations sacrifice tail response times,
which often dictate application performance. The nanoPU’s
hardware pipeline makes median and tail RPC response times
almost identical.
Low-latency RPCs (hardware). We are not the first to im-
plement core-selection algorithms in hardware. RPCvalet [12]
and NeBuLa [57] are both built on the Scale-out NUMA ar-
chitecture [46]. RPCvalet implements a single queue system,
which in theory provides optimal performance. However, it
ran into memory bandwidth contention issues, which they
later resolve in NeBuLa. Both NeBuLa and R2P2 [36] imple-
ment the JBSQ load balancing policy; NeBuLa runs JBSQ
on the server whereas R2P2 runs JBSQ in a programmable
switch. Like NeBuLa, the nanoPU also implements JBSQ to
steer requests to cores.

Many NICs support RDMA in hardware. Several systems
(HERD [29], FaSST [30], and DrTM+R [11]) exploit RDMA
to build applications on top. As described in Sections 4.1 and
5.3, the nanoPU can be used to implement programmable
one-sided RDMA operations while providing lower latency
than state-of-the-art commercial NICs.

SmartNICs (NICs with CPUs on them) [5,41,44] are being
deployed to offload infrastructure software from the main
server to CPUs on the NIC. However, these may actually
increase the RPC latency, unless they adopt nanoPU-like de-
signs on the NIC.
Transport protocols in hardware. We are not the first to

implement the transport layer and congestion control in hard-
ware. Modern NICs that support RDMA over Converged
Ethernet (RoCE) implement DCQCN [67] in hardware. In the
academic research community, Tonic [2] proposes a frame-
work for implementing congestion control in hardware. The
nanoPU’s programmable transport layer (and NDP implemen-
tation) draws upon ideas in Tonic.

Register file interface. GPRs were first used by the J-
machine [13] for low-latency inter-core communication on
the same machine, but were abandoned because of the diffi-
culty implementing thread-safety. The idea has reappeared in
several designs, including the RAW processor [64], and the
SNAP processor for low-power sensor networks [32].

8 Conclusion

Today’s CPUs are optimized for load-store operations to and
from memory. Memory data is treated as a first-class citizen.
But modern workloads frequently process huge numbers of
small RPCs. Rather than burden RPC messages with travers-
ing a hierarchy optimized for data sitting in memory, we
propose providing them with a new optimized fast path, in-
serting them directly into the heart of the CPU, bypassing
the unnecessary complications of caches, PCIe and address
translation. Hence, we aim to elevate network data to the same
importance as memory data.

As datacenter applications continue to scale out, with one
request fanning out to generate many more, we must find ways
to minimize not only the communication overhead, but also
the tail response time. Long tail response times are inherently
caused by resource contention (e.g., shared CPU cores, cache
space, and memory and network bandwidths). By moving key
scheduling decisions into hardware (i.e., congestion control,
core selection, and thread scheduling), these resources can
be scheduled extremely efficiently and predictably, leading to
lower tail response times.

If future cloud providers can provide bounded, end-to-end
RPC response times for very small nanoRequests, on shared
servers also carrying regular workloads, we will likely see
much bigger distributed applications based on finer grain
parallelism. Our work helps to address part of the problem:
bounding the RPC response time once the request arrives at
the NIC. If coupled with efforts to bound network latency, it
might complete the end-to-end story. We hope our results will
encourage other researchers to push these ideas further.

Acknowledgements

We would like to thank our shepherd, Yiying Zhang, Amin
Vahdat, John Ousterhout, and Kunle Olukotun for their invalu-
able suggestions throughout the duration of this project. This
work was supported by Xilinx, Google, Stanford Platform
Lab, and DARPA Contract Numbers HR0011-20-C-0107 and
FA8650-18-2-7865.

252 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

A Artifact Appendix

Abstract
This artifact contains the Chisel source code of our nanoPU
prototype as well as the application code and simulation in-
frastructure that is required to reproduce the key results pre-
sented in this paper. Our prototype is evaluated using both Ver-
ilator for cycle-accurate simulations in software, and Firesim
for cycle-accurate simulations on FPGAs in AWS. The artifact
is packaged as an AWS EC2 image with all of the dependen-
cies pre-installed to make it easy for others to use and build
upon our work.

Scope
The artifact can be used to reproduce the key results presented
in the following figures:

• Figure 3 – Loopback latency; nanoPU vs. traditional.

• Figure 4 – Loopback throughput; nanoPU vs. tradi-
tional.

• Figure 5 – Loopback-with-inc. throughput; nanoPU vs.
traditional.

• Figure 6 – Dot-product throughput speedup.

• Figure 7 – Tail response time using priority thread
scheduling.

• Figure 8 – Tail response time using bounded message
processing time.

• Figure 9 – MICA tail response time.

• Figure 10 – Set intersection tail response time.

Additionally, there are a number of ways to use the artifact
to build upon our work. For example, you can write new
applications for the nanoPU and evaluate them at close to
real-time using a custom topology with Firesim. Alternatively,
you can modify the nanoPU architecture and use the provided
simulation infrastructure to easily test your changes.

Contents
The documentation for the nanoPU artifact can be found at:
https://github.com/l-nic/chipyard/wiki. The primary reposito-
ries are briefly described below:

• Chipyard – The main top-level repository which con-
tains the others listed below as git submodules. Contains
application code as well as Verilator simulation infras-
tructure.

• Rocket Chip – Contains the chisel source code for our
modified RISC-V Rocket core (as well as all of the other
components that are needed to create a full SoC).

• L-NIC – Contains the chisel source code for the nanoPU
NIC.

• Firesim – Provides all of the infrastructure that is re-
quired to run FPGA-accelerated, cycle-accurate simula-
tions on AWS.

Hosting
The nanoPU artifact is hosted on GitHub:
https://github.com/l-nic/chipyard/tree/nanoPU-artifact-v1.0

The development branch is called lnic-dev and, at
the time of this writing, the latest release is tagged
nanoPU-artifact-v1.0. In order to make it easy for oth-
ers to reuse and build upon our work, we have developed a
custom Amazon Machine Image (AMI) with the artifact and
all required dependencies pre-installed. See the documenta-
tion for detailed instructions regarding how to access and use
this AMI.

Requirements
In order to use the nanoPU artifact, you will need access to
an AWS account and you will need to subscribe to the AWS
FPGA developer AMI. Additionally, you will need permission
from AWS to launch F1 instances. These requirements are
explained in greater detail in the online documentation.

References
[1] Amazon ec2 f1 instances. https://aws.amazon.com/

ec2/instance-types/f1/. Accessed on 2020-08-10.

[2] Mina Tahmasbi Arashloo, Alexey Lavrov, Manya
Ghobadi, Jennifer Rexford, David Walker, and David
Wentzlaff. Enabling programmable transport protocols
in high-speed nics. In 17th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 20),
pages 93–109, 2020.

[3] Krste Asanovic, Rimas Avizienis, Jonathan Bachrach,
Scott Beamer, David Biancolin, Christopher Celio,
Henry Cook, Daniel Dabbelt, John Hauser, Adam
Izraelevitz, et al. The rocket chip generator. EECS
Department, University of California, Berkeley, Tech.
Rep. UCB/EECS-2016-17, 2016.

[4] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song
Jiang, and Mike Paleczny. Workload Analysis of a
Large-Scale Key-Value Store. In Proceedings of the
12th ACM SIGMETRICS/PERFORMANCE Joint Inter-
national Conference on Measurement and Modeling
of Computer Systems, SIGMETRICS ’12, page 53–64,
New York, NY, USA, 2012. Association for Computing
Machinery.

[5] Aws nitro system. https://aws.amazon.com/ec2/
nitro/. Accessed on 2020-12-10.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 253

https://www.veripool.org/verilator/
https://www.veripool.org/verilator/
https://fires.im/
https://github.com/l-nic/chipyard/wiki
https://github.com/l-nic/chipyard/tree/lnic-dev
https://github.com/l-nic/rocket-chip/tree/lnic-dev
https://github.com/l-nic/lnic
https://github.com/l-nic/firesim/tree/lnic-dev
https://github.com/l-nic/chipyard/tree/nanoPU-artifact-v1.0
https://github.com/l-nic/chipyard/wiki
https://github.com/l-nic/chipyard/wiki
https://github.com/l-nic/chipyard/wiki
https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/ec2/nitro/
https://aws.amazon.com/ec2/nitro/

[6] Jonathan Bachrach, Huy Vo, Brian Richards, Yun-
sup Lee, Andrew Waterman, Rimas Avižienis, John
Wawrzynek, and Krste Asanović. Chisel: construct-
ing hardware in a scala embedded language. In DAC
Design Automation Conference 2012, pages 1212–1221.
IEEE, 2012.

[7] Luiz Barroso, Mike Marty, David Patterson, and
Parthasarathy Ranganathan. Attack of the killer mi-
croseconds. Communications of the ACM, 60(4):48–54,
2017.

[8] Andrzej Białecki, Robert Muir, Grant Ingersoll, and Lu-
cid Imagination. Apache lucene 4. In SIGIR 2012
workshop on open source information retrieval, page 17,
2012.

[9] Carsten Binnig, Andrew Crotty, Alex Galakatos, Tim
Kraska, and Erfan Zamanian. The end of slow net-
works: It’s time for a redesign. Proc. VLDB Endow.,
9(7):528–539, March 2016.

[10] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Vargh-
ese, Nick McKeown, Martin Izzard, Fernando Mujica,
and Mark Horowitz. Forwarding metamorphosis: Fast
programmable match-action processing in hardware for
sdn. ACM SIGCOMM Computer Communication Re-
view, 43(4):99–110, 2013.

[11] Yanzhe Chen, Xingda Wei, Jiaxin Shi, Rong Chen, and
Haibo Chen. Fast and general distributed transactions
using rdma and htm. In Proceedings of the Eleventh
European Conference on Computer Systems, pages 1–
17, 2016.

[12] Alexandros Daglis, Mark Sutherland, and Babak Falsafi.
Rpcvalet: Ni-driven tail-aware balancing of µs-scale
rpcs. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming
Languages and Operating Systems, pages 35–48, 2019.

[13] William J Dally, Andrew Chien, Stuart Fiske, Walde-
mar Horwat, and John Keen. The j-machine: A fine
grain concurrent computer. Technical report, MAS-
SACHUSETTS INST OF TECH CAMBRIDGE MI-
CROSYSTEMS RESEARCH CENTER, 1989.

[14] William James Dally and Brian Patrick Towles. Princi-
ples and Practices of Interconnection Networks. Mor-
gan Kaufmann Publishers Inc., San Francisco, CA, USA,
2004.

[15] Scott Davidson, Shaolin Xie, Christopher Torng, Khalid
Al-Hawai, Austin Rovinski, Tutu Ajayi, Luis Vega, Chun
Zhao, Ritchie Zhao, Steve Dai, et al. The celerity open-
source 511-core risc-v tiered accelerator fabric: Fast
architectures and design methodologies for fast chips.
IEEE Micro, 38(2):30–41, 2018.

[16] Intel corporation. intel data direct i/o tech-
nology (intel ddio): A primer. https:
//www.intel.com/content/dam/www/public/
us/en/documents/technology-briefs/
data-direct-i-o-technology-brief.pdf. Ac-
cessed on 2020-08-17.

[17] Jeffrey Dean and Luiz André Barroso. The tail at scale.
Communications of the ACM, 56(2):74–80, 2013.

[18] DPDK: Data Plane Development Kit. https://www.
dpdk.org/. Accessed on 2020-12-04.

[19] eBPF – extended Berkeley Packet Filter.
https://prototype-kernel.readthedocs.io/
en/latest/bpf/. Accessed on 2020-12-08.

[20] Cisco Nexus X100 SmartNIC K3P-Q Data
Sheet. https://www.cisco.com/c/en/us/
products/collateral/interfaces-modules/
nexus-smartnic/datasheet-c78-743828.html.
Accessed on 2020-12-01.

[21] Alireza Farshin, Amir Roozbeh, Gerald Q Maguire Jr,
and Dejan Kostić. Reexamining direct cache access to
optimize i/o intensive applications for multi-hundred-
gigabit networks. In 2020 USENIX Annual Technical
Conference (USENIX ATC 20), pages 673–689, 2020.

[22] Sadjad Fouladi, Dan Iter, Shuvo Chatterjee, Christos
Kozyrakis, Matei Zaharia, and Keith Winstein. A thunk
to remember: make-j1000 (and other jobs) on functions-
as-a-service infrastructure, 2017.

[23] Sadjad Fouladi, Riad S Wahby, Brennan Shacklett,
Karthikeyan Vasuki Balasubramaniam, William Zeng,
Rahul Bhalerao, Anirudh Sivaraman, George Porter, and
Keith Winstein. Encoding, Fast and Slow: Low-latency
Video Processing Using Thousands of Tiny Threads. In
USENIX NSDI, 2017.

[24] Mark Handley, Costin Raiciu, Alexandru Agache, An-
drei Voinescu, Andrew W Moore, Gianni Antichi, and
Marcin Wójcik. Re-architecting datacenter networks
and stacks for low latency and high performance. In Pro-
ceedings of the Conference of the ACM Special Interest
Group on Data Communication, pages 29–42, 2017.

[25] Stephen Ibanez, Gianni Antichi, Gordon Brebner, and
Nick McKeown. Event-driven packet processing. In
Proceedings of the 18th ACM Workshop on Hot Topics
in Networks, pages 133–140, 2019.

[26] Stephen Ibanez, Muhammad Shahbaz, and Nick McK-
eown. The case for a network fast path to the cpu. In
Proceedings of the 18th ACM Workshop on Hot Topics
in Networks, pages 52–59, 2019.

254 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/data-direct-i-o-technology-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/data-direct-i-o-technology-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/data-direct-i-o-technology-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/data-direct-i-o-technology-brief.pdf
https://www.dpdk.org/
https://www.dpdk.org/
https://prototype-kernel.readthedocs.io/en/latest/bpf/
https://prototype-kernel.readthedocs.io/en/latest/bpf/
https://www.cisco.com/c/en/us/products/collateral/interfaces-modules/nexus-smartnic/datasheet-c78-743828.html
https://www.cisco.com/c/en/us/products/collateral/interfaces-modules/nexus-smartnic/datasheet-c78-743828.html
https://www.cisco.com/c/en/us/products/collateral/interfaces-modules/nexus-smartnic/datasheet-c78-743828.html

[27] Kostis Kaffes, Timothy Chong, Jack Tigar Humphries,
Adam Belay, David Mazières, and Christos Kozyrakis.
Shinjuku: Preemptive scheduling for µsecond-scale tail
latency. In 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 19), pages
345–360, 2019.

[28] Anuj Kalia, Michael Kaminsky, and David Andersen.
Datacenter rpcs can be general and fast. In 16th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 19), pages 1–16, 2019.

[29] Anuj Kalia, Michael Kaminsky, and David G Andersen.
Using rdma efficiently for key-value services. In Pro-
ceedings of the 2014 ACM conference on SIGCOMM,
pages 295–306, 2014.

[30] Anuj Kalia, Michael Kaminsky, and David G Ander-
sen. Fasst: Fast, scalable and simple distributed transac-
tions with two-sided (RDMA) datagram rpcs. In 12th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16), pages 185–201, 2016.

[31] Sagar Karandikar, Howard Mao, Donggyu Kim, David
Biancolin, Alon Amid, Dayeol Lee, Nathan Pemberton,
Emmanuel Amaro, Colin Schmidt, Aditya Chopra, et al.
Firesim: Fpga-accelerated cycle-exact scale-out system
simulation in the public cloud. In 2018 ACM/IEEE 45th
Annual International Symposium on Computer Architec-
ture (ISCA), pages 29–42. IEEE, 2018.

[32] Clinton Kelly, Virantha Ekanayake, and Rajit Manohar.
Snap: A sensor-network asynchronous processor. In
Ninth International Symposium on Asynchronous Cir-
cuits and Systems, 2003. Proceedings., pages 24–33.
IEEE, 2003.

[33] Richard E Kessler and James L Schwarzmeier. CRAY
T3D: A New Dimension for Cray Research. In Digest
of Papers. COMPCON Spring, pages 176–182. IEEE,
1993.

[34] Zahra Khatami, Hartmut Kaiser, Patricia Grubel, Adrian
Serio, and J Ramanujam. A massively parallel dis-
tributed n-body application implemented with hpx. In
2016 7th Workshop on Latest Advances in Scalable Al-
gorithms for Large-Scale Systems (ScalA), pages 57–64.
IEEE, 2016.

[35] Changhoon Kim, Anirudh Sivaraman, Naga Katta, An-
tonin Bas, Advait Dixit, and Lawrence J Wobker. In-
band network telemetry via programmable dataplanes.
In ACM SIGCOMM, 2015.

[36] Marios Kogias, George Prekas, Adrien Ghosn, Jonas Fi-
etz, and Edouard Bugnion. R2p2: Making rpcs first-class
datacenter citizens. In 2019 USENIX Annual Technical
Conference (USENIXATC 19), pages 863–880, 2019.

[37] Yilong Li, Seo Jin Park, and John Ousterhout. Millisort
and milliquery: Large-scale data-intensive computing
in milliseconds. In 18th {USENIX} Symposium on Net-
worked Systems Design and Implementation ({NSDI}
21), 2021.

[38] Hyeontaek Lim, Dongsu Han, David G Andersen, and
Michael Kaminsky. MICA: A holistic approach to fast
in-memory key-value storage. In 11th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 14), pages 429–444, 2014.

[39] Ming Liu, Tianyi Cui, Henry Schuh, Arvind Krishna-
murthy, Simon Peter, and Karan Gupta. Offloading dis-
tributed applications onto smartnics using ipipe. In
Proceedings of the ACM Special Interest Group on Data
Communication, pages 318–333. Association for Com-
puting Machinery, 2019.

[40] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christo-
pher Alfeld, Sean Bauer, Carlo Contavalli, Michael Dal-
ton, Nandita Dukkipati, William C Evans, Steve Gribble,
et al. Snap: a microkernel approach to host network-
ing. In Proceedings of the 27th ACM Symposium on
Operating Systems Principles, pages 399–413, 2019.

[41] Mellanox bluefield-2. https://www.mellanox.com/
products/bluefield2-overview. Accessed on
2020-12-10.

[42] Behnam Montazeri, Yilong Li, Mohammad Alizadeh,
and John Ousterhout. Homa: A receiver-driven low-
latency transport protocol using network priorities. In
Proceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication (SIGCOMM
18), pages 221–235, 2018.

[43] Microsoft: Introduction to Receive Side
Scaling. https://docs.microsoft.com/
en-us/windows-hardware/drivers/network/
introduction-to-receive-side-scaling. Ac-
cessed on 2020-12-07.

[44] Naples dsc-100 distributed services card.
https://www.pensando.io/assets/documents/
Naples_100_ProductBrief-10-2019.pdf. Ac-
cessed on 2020-12-10.

[45] Rolf Neugebauer, Gianni Antichi, José Fernando Zazo,
Yury Audzevich, Sergio López-Buedo, and Andrew W
Moore. Understanding pcie performance for end host
networking. In Proceedings of the 2018 Conference of
the ACM Special Interest Group on Data Communica-
tion, pages 327–341, 2018.

[46] Stanko Novakovic, Alexandros Daglis, Edouard
Bugnion, Babak Falsafi, and Boris Grot. Scale-out
numa. ACM SIGPLAN Notices, 49(4):3–18, 2014.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 255

https://www.mellanox.com/products/bluefield2-overview
https://www.mellanox.com/products/bluefield2-overview
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/introduction-to-receive-side-scaling
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/introduction-to-receive-side-scaling
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/introduction-to-receive-side-scaling
https://www.pensando.io/assets/documents/Naples_100_ProductBrief-10-2019.pdf
https://www.pensando.io/assets/documents/Naples_100_ProductBrief-10-2019.pdf

[47] Diego Ongaro and John Ousterhout. In search of an
understandable consensus algorithm. In 2014 USENIX
Annual Technical Conference (USENIX ATC 14), pages
305–319, 2014.

[48] Options for Code Generation Conventions.
https://gcc.gnu.org/onlinedocs/gcc/
Code-Gen-Options.html#Code-Gen-Options.
Accessed on 2020-11-11.

[49] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam
Belay, and Hari Balakrishnan. Shenango: Achieving
high CPU efficiency for latency-sensitive datacenter
workloads. In 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 19), pages
361–378, 2019.

[50] Arash Pourhabibi, Siddharth Gupta, Hussein Kassir,
Mark Sutherland, Zilu Tian, Mario Paulo Drumond,
Babak Falsafi, and Christoph Koch. Optimus Prime:
Accelerating Data Transformation in Servers. In Pro-
ceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages
and Operating Systems (ASPLOS 20), 2020.

[51] George Prekas, Marios Kogias, and Edouard Bugnion.
Zygos: Achieving low tail latency for microsecond-scale
networked tasks. In Proceedings of the 26th Symposium
on Operating Systems Principles (SOSP 17), pages 325–
341, 2017.

[52] Google protocol buffers. https://developers.
google.com/protocol-buffers. Accessed on 2020-
12-08.

[53] raft GitHub. https://github.com/willemt/raft.
Accessed on 2020-08-17.

[54] Rocket-chip github. https://github.com/
chipsalliance/rocket-chip. Accessed on
2020-08-17.

[55] David Sidler, Zeke Wang, Monica Chiosa, Amit Kulka-
rni, and Gustavo Alonso. Strom: smart remote memory.
In Proceedings of the Fifteenth European Conference
on Computer Systems, pages 1–16, 2020.

[56] Akshitha Sriraman and Thomas F Wenisch. µ suite:
A benchmark suite for microservices. In 2018 IEEE
International Symposium on Workload Characterization
(IISWC), pages 1–12. IEEE, 2018.

[57] Mark Sutherland, Siddharth Gupta, Babak Falsafi, Viren-
dra Marathe, Dionisios Pnevmatikatos, and Alexandros
Daglis. The NEBULA rpc-optimized architecture. Tech-
nical report, 2020.

[58] Sx1036 product brief. https://www.mellanox.com/
related-docs/prod_eth_switches/PB_SX1036.
pdf. Accessed on 2020-09-12.

[59] Apache thrift. https://thrift.apache.org/. Ac-
cessed on 2020-12-08.

[60] Amin Tootoonchian, Aurojit Panda, Chang Lan, Melvin
Walls, Katerina Argyraki, Sylvia Ratnasamy, and Scott
Shenker. Resq: Enabling slos in network function vir-
tualization. In 15th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 18), pages
283–297, 2018.

[61] Shin-Yeh Tsai, Yizhou Shan, and Yiying Zhang. Dis-
aggregating persistent memory and controlling them
remotely: An exploration of passive disaggregated key-
value stores. In 2020 {USENIX} Annual Technical Con-
ference ({USENIX} {ATC} 20), pages 33–48, 2020.

[62] User level threads. http://pdxplumbers.osuosl.
org/2013/ocw//system/presentations/1653/
original/LPC%20-%20User%20Threading.pdf.
Accessed on 2020-12-08.

[63] Verilator. https://www.veripool.org/wiki/
verilator. Accessed on 2020-01-29.

[64] Elliot Waingold, Michael Taylor, Devabhaktuni Srikr-
ishna, Vivek Sarkar, Walter Lee, Victor Lee, Jang Kim,
Matthew Frank, Peter Finch, Rajeev Barua, et al. Baring
it all to software: Raw machines. Computer, 30(9):86–
93, 1997.

[65] Wikipedia:database download. https:
//en.wikipedia.org/wiki/Wikipedia:
Database_download. Accessed on 2020-12-08.

[66] Yifan Yuan, Yipeng Wang, Ren Wang, and Jian Huang.
Halo: accelerating flow classification for scalable packet
processing in nfv. In 2019 ACM/IEEE 46th Annual Inter-
national Symposium on Computer Architecture (ISCA),
pages 601–614. IEEE, 2019.

[67] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong
Guo, Marina Lipshteyn, Yehonatan Liron, Jitendra Pad-
hye, Shachar Raindel, Mohamad Haj Yahia, and Ming
Zhang. Congestion control for large-scale rdma deploy-
ments. ACM SIGCOMM Computer Communication
Review (CCR), 45(4):523–536, 2015.

256 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://gcc.gnu.org/onlinedocs/gcc/Code-Gen-Options.html#Code-Gen-Options
https://gcc.gnu.org/onlinedocs/gcc/Code-Gen-Options.html#Code-Gen-Options
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://github.com/willemt/raft
https://github.com/chipsalliance/rocket-chip
https://github.com/chipsalliance/rocket-chip
https://www.mellanox.com/related-docs/prod_eth_switches/PB_SX1036.pdf
https://www.mellanox.com/related-docs/prod_eth_switches/PB_SX1036.pdf
https://www.mellanox.com/related-docs/prod_eth_switches/PB_SX1036.pdf
https://thrift.apache.org/
http://pdxplumbers.osuosl.org/2013/ocw//system/presentations/1653/original/LPC%20-%20User%20Threading.pdf
http://pdxplumbers.osuosl.org/2013/ocw//system/presentations/1653/original/LPC%20-%20User%20Threading.pdf
http://pdxplumbers.osuosl.org/2013/ocw//system/presentations/1653/original/LPC%20-%20User%20Threading.pdf
https://www.veripool.org/wiki/verilator
https://www.veripool.org/wiki/verilator
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download

	Introduction
	The nanoPU Design
	Thread-Safe Register File Interface
	How an application uses the interface

	Thread Scheduling in Hardware
	How the hardware thread scheduler works

	The nanoPU NIC Pipeline

	Our nanoPU Implementation
	RISC-V Register File Network Interface
	Bounded Thread Scheduling in Hardware
	Prototype NIC Pipeline
	The nanoPU HW/SW Interface
	How It All Fits Together

	The nanoPU Applications
	Example Application Classes

	Evaluation
	Methodology
	Microbenchmarks
	Register file interface
	Hardware thread scheduling
	Prototype NIC pipeline

	Application Benchmarks

	Discussion
	Related Work
	Conclusion
	Artifact Appendix

