
From Sand to Flour: The Next Leap in Granular Computing with NanoSort

Theo Jepsen?†, Stephen Ibanez?†, Gregory Valiant?, and Nick McKeown?†

?Stanford University †Intel

Abstract
The granularity of distributed computing is limited by com-

munication time: there is no point in farming out smaller and
smaller tasks if the communication overhead dominates the
decrease in processing time due to the added parallelism. In
this work, we leverage the low communication latency of a
new NIC/CPU hardware design, the nanoPU, to explore a new
extreme of granularity in distributed computation, where a
problem is partitioned into tens of thousands of nanosecond-
scale tasks.

To evaluate the feasibility and practicality of extremely
fine-grained computing, we built NanoSort, a distributed sort-
ing algorithm running on the nanoPU. Using cycle-accurate
FireSim simulations of 65,536 nanoPU cores, we show that
NanoSort can sort 1M keys in 68µs, an order of magnitude
faster than MilliSort, the current state-of-the-art.

1 Introduction

There are two main ways to speed-up compute workloads: use
beefier CPUs with higher clock speeds; or split the workload
into smaller, finer-grained pieces that run in parallel.

With the slowing of Dennard scaling, clock speed is not
increasing as fast as it once did, the general trend is towards
increased parallelism. Over the past twenty years, we have
seen parallelism increase with multicore CPUs,from dual-
core, to quad core, to 64-core CPUs. It is not uncommon to
see a single server with hundreds of cores (e.g., 224 cores
per server [30]). To further increase parallelism, workloads
frequently expand beyond a single server, to racks of servers
connected by high-speed networks. As we add more cores,
however, the cost of inter-core communication increases: from
O(ns) within the same CPU, to O(10ns) between CPUs on the
same server, and to O(10µs) across the network.

As Gene Amdahl said in 1967 “the overall performance
improvement gained by optimizing a single part of a system
is limited by the fraction of time that the improved part is
actually used” [3]. In our context, as we break the overall

workload into smaller and smaller compute tasks to be pro-
cessed in parallel, we eventually run into the overhead cost
of communication between the cores. If we make the tasks
too small, the completion time is dominated by the commu-
nication time between CPU cores. Ultimately, if we break
the job into tiny tasks, farmed out to a huge number of CPU
cores, the completion time will be dominated by the commu-
nication time. The communication time limits the degree of
parallelism.

We have seen this trend with one of the most executed [23,
42] and studied [1, 6, 42] workloads in computer science1:
sorting. Initially, the biggest speedups were achieved by scal-
ing up to beefier CPUs. Then, systems began scaling out to
multiple cores. In 1986, Tsukerman et al. FastSort [36] sorted
1M records in 3600 seconds with 2 cores. In 1989, it took
Baugsto et al. 180 seconds with 16 cores, and 40 seconds with
100 cores [9]. In 1993, Nyberg et al. sorted in 7 seconds using
AlphaSort [31] with 3 cores.

When the single-server limit was reached, they started using
multiple servers connected by the network. In 2002, Popovici
et al. [33] sorted in 440 milliseconds with 32 servers, each
with two P3 CPUs. Then, they started using racks of servers,
but optimized for throughput, not latency. In 2009, Hadoop
used 3,452 nodes with 2 quadcore CPUs each [39]. In 2016,
TencentSort [17], the current record holder of the GraySort
"Daytona" (sorting throughput category) used 512 nodes with
20 cores each. These large scale systems were trading-off
latency in favor of throughput. Recently, MilliSort [27] tried
pushing the limits of large-scale, fast (low-latency) sorting, by
using RAMCloud, a high performance networking subsystem.
They achieved an impressive speed-up with finer granular-
ity: they sorted 1M records in 1ms using 2,240 cores. But
they were fundamentally limited by Amdahl’s law. When Mil-
liSort’s cost of network communication (using RAMCloud
with a 5µs RTT) dominated the runtime, they could no longer
decrease the size of compute tasks, limiting the scale-out.

The networking community has been working to reduce

1Sorting accounted for a quarter of computing time in 1984 [42].

1

ar
X

iv
:s

ub
m

it/
42

80
00

8 
 [

cs
.D

C
] 

 2
6 

A
pr

 2
02

2



the communication overhead. Recently we have seen several
designs that reduce latency, especially at the end-host, which
is responsible for most of the of the latency [10]. By opti-
mizing the software stack using currently available network
cards (NICs), eRPC [20] reduces the wire-to-wire latency to
850ns. NeBuLa [40] presents a hardware design that delivers
packets straight from the NIC to the CPU L1 cache, with
a latency of 100ns. These systems bring two main benefits:
lower overhead and reduced latency. To reduce the mean and
tail latency, the nanoPU [16] offloads the entire RPC stack
to NIC hardware and provides a dedicated fast path directly
between the network and CPU register file. The nanoPU’s
wire-to-wire round-trip latency through a core is just 69ns
with almost no additional tail latency.

Generally, we decide to stop increasing parallelism when
the limits of the underlying communication system are
reached. For example, MilliSort reached this limit with 2,240
cores. Since the nanoPU has reduced the communication
latency by an order of magnitude, from microseconds to
nanoseconds, it may be able to push the limit further. We
now have the opportunity to take granularity to a new ex-
treme. This raises the question: if we had an infinite number
of cores, how much of a speed-up would we get?

When communication latency is on the order of microsec-
onds, the workload takes O(ms). For example, with a RTT
of 5µs and 10 communication steps, the cost will be 50µs,
not even including the compute time. If the communication
latency is reduced to nanoseconds, will workloads complete
within microseconds?

Using a network stack with low communication over-
head is essential, but not the sole requirement to enable fine-
granularity and massive parallelism. An application must be
amenable to parellilization, particularly, it must be possible
to split the application into fine-grained tasks.

Increasing granularity to the extreme presents three main
challenges. First, we have to shrink the task size as much as
possible, but not too small, as it will have to pay the price of
constant overheads. Also, as tasks get smaller, we need more
parallel tasks, which increases the amount of communication.
Second, the tasks work dependency graphs must be structured
in such a way to maximize system utilization. If tasks have
too many dependencies, they may spend too much time wait-
ing, reducing the overall parallelism. Third, the load must
be evenly distributed across cores. This is especially impor-
tant for sparse workloads, which are unpredictable, so must
be partitioned in such a way to reduce variance. Otherwise,
imbalanced partitioning will lead to some tasks becoming
stragglers.

We believe that there are two key ideas for addressing these
challenges of granular computing: reduce overhead and use
efficient algorithms. New low-latency, predictable networking
stacks, are essential for reducing the overheads. This enables
tasks to send and receive many small messages, enabling
finer granularity. It is also necessary to design algorithms

that overcome the imbalance of partitioning the data, as well
as structuring the communication, to reduce the length and
duration of the critical path in the work dependency graph.

To demonstrate how these key ideas can push the limits
on fine-grained computing, we explore the problem of dis-
tributed sorting. Sorting is a good problem to study because:
it is a familiar problem that is well understood and easy to
describe [6]; it is industrially applicable, from analytics to
graphics; and its unpredictable nature makes it non-trivial
to implement as a distributed algorithm that stresses system
resources [35].

We designed a new sorting algorithm, NanoSort. NanoSort
runs on a cluster with tens of thousands of nanoPU cores using
efficient communication patterns, which minimize runtime
variance. The nanoPU provides very low overhead communi-
cation with just 69ns wire-to-wire latency. Such low overhead
makes it possible for NanoSort to use very small tasks, on
the order of 100s of nanoseconds. The NanoSort algorithm is
recursive, so it breaks the problem into smaller sub-problems
in each iteration. By fanning out quickly, the critical path (the
depth in the work dependency graph) is minimized, reduc-
ing the overall runtime. The nanoPU’s predictable latency,
together with NanoSort’s partitioning, minimizes the variance.
The predictable latency ensures tasks complete in time, while
the balanced partitioning balances the work across all the
tasks.

To see whether NanoSort can scale, we used hundreds of
Amazon EC2 instances to run cycle level simulations of thou-
sands of nanoPU cores. We ran the GraySort 1M sorting
benchmark, which measures the end-to-end time to sort 1M
records. Using 65,536 cores, NanoSort sorts 1M records in
68µs, which is an order of magnitude faster than MilliSort’s
1ms record.

Overall, we make the following contributions:

• Explore the design space for distributed algorithms to effi-
ciently use new low latency communication stacks;

• Introduce NanoSort, a sorting algorithm designed for low-
latency, fine-grained computing; and

• Perform a large scale, cycle level simulation of NanoSort
sorting 1M keys in 68µs, an order of magnitude faster than
the state of the art.

The rest of the paper is structured as follows. The next sec-
tion provides background on existing network stacks and new
low latency network stacks. Section 3 explains how workloads
can be restructured for even finer-grained tasks. Sections 4
and 5 describe the design and implementation of our new sort-
ing algorithm, NanoSort. Section 6 evaluates the parameters
that affect fine-grained computing, as well as a large scale
simulation of NanoSort.

2



System Median latency (ns)

eRPC 850
NeBuLa 100
nanoPU 69

Table 1: Median wire-to-wire loopback latency for three end-
host network stacks.

2 Low Latency Communication Systems

In recent years, there has been a significant amount of re-
search effort in both industry and academia to design low
latency, high throughput communication systems. Systems
like Shinjuku [19] and Shenango [32] recognize the high
overheads associated with the Linux network stack and opt to
use a custom data-plane operating system that is designed to
efficiently schedule network requests and application threads
across cores. The authors of eRPC [20] demonstrate that
it is possible to achieve very low latency RPCs using com-
modity NICs by leveraging a number of clever common case
optimizations. Many commercial NICs include support for
remote direct memory access (RDMA) which enables low
latency by performing zero-copy communication between
application buffers on remote systems and by offloading the
transport layer into NIC hardware. Another approach to opti-
mize communication performance is to design new datacenter
transport protocols. NDP [15] and Homa [28] are two re-
cent datacenter transport protocols that achieve low latency
communication by leveraging receiver-driven solicitation, and
in-network support for packet trimming and priority queueing.
One of the most promising and ambitious approaches we have
seen to optimize communication performance is to integrate
the CPU and NIC, thus bypassing PCIe. NeBuLa [40] and
the nanoPU [16] are two such systems that take this approach.
The nanoPU is able to achieve a wire-to-wire latency of just
69ns, with very little variance, and each core is able to pro-
cess over 100M requests per second. While the nanoPU is
a research prototype, we choose to use it as a platform for
fine-grained computing because we believe its performance
characteristics are representative of future datacenter network
infrastructure. Additionally, an open source nanoPU proto-
type is readily available [29] and can be used to implement
large scale application on Amazon cloud. The following sec-
tion describes some of the key characteristics of the nanoPU
that allow it achieve such high performance.

2.1 nanoPU Background
The nanoPU is a hero experiment intended to push the per-
formance limits of the host network stack. It is designed to
minimize average and tail latency as well as the CPU over-
head associated with network communication. By doing so, it
enables applications threads on remote cores to communicate

• Scan 1K 8-byte words in L1 cache
• Sort 40 8-byte keys (Section 6)
• Travel 300m at the speed of light
• Receive 2Kbyte on a 200Gbps NIC
• Process 118 8-byte loopback nanoRequests [16]
• Perform 2 MICA R/W operations [16]
• Perform 4 set algebra intersections [16]

Figure 1: Examples of what can be accomplished in under 1
µs (computations using a nanoPU core).

quickly and predictably at high message rates. The nanoPU
“fast path” uses a novel approach to deliver data directly be-
tween the network and the CPU register file - bypassing PCIe,
caches, and the memory hierarchy entirely. In order to min-
imize tail latency, the nanoPU fast path implements the net-
work stack’s key resource scheduling decisions in efficient
hardware: (1) load balancing of network messages across
cores and (2) scheduling of application threads on cores. Fur-
thermore, the nanoPU implements latency-optimized network
transport protocols in programmable hardware thus reducing
the CPU overhead associated with network communication
Additionally, the nanoPU’s simple two-register interface en-
ables applications to send and receive small messages at very
high rates.

3 Extremely Granular Computing

Current systems have tasks (e.g. RPCs) that run for hundreds
of microseconds [4, 8, 14, 19, 32]. One reason for long-lived
tasks is to justify the communication cost of invocation: if it
takes microseconds [20] to invoke the task, it should run for
microseconds to amortize the communication cost.

As the communication latency and overhead decrease, it is
worth farming out smaller, shorter-lived tasks. With the 69ns
wire-to-wire communication latency of the nanoPU, tasks
only need to run for hundreds of nanoseconds to amortize the
communication..

A time budget on the order of hundreds of nanoseconds
may seem too short to perform useful work for an application,
especially on a general purpose CPU. Figure 1 shows exam-
ples of common operations and tasks that complete within
1µs on a 3.2GHz in-order RISC-V Rocket core. When data is
cache resident, which is the case for many of those operations,
most of the time is spent on “useful” compute cycles, instead
of waiting for memory I/O. Alone, a single small task may
not be able implement a meaningful application. However, to-
gether, thousands of fine grained tasks can execute a large job,
harnessing the aggregate CPU cycles and cache bandwidth.

There are two main benefits of using fine-grained tasks.
First, by breaking a large job into smaller pieces, it is possible
to increase parallelism. It lets us re-shape the compute core-

3



Number of values

E
la

ps
ed

 ti
m

e 
(n

s)

5,000

10,000

15,000

20,000

2,000 4,000 6,000 8,000

(a) Runtime

Number of values

L1
D

 m
is

se
s

250

500

750

1,000

1,250

2,000 4,000 6,000 8,000

(b) Cache misses

Figure 2: Using a single core to find the minimum from an
increasing number of values.

hours: we can run the same number of core-hours in less time,
going from “deep” to “wide”. Second, the compute resources
can be scaled to the precisely match the size of the job: we
can allocate compute at the granularity of cores or threads,
instead of servers or entire racks.

Parallelism doesn’t come “for free” though. Job comple-
tion time depends on the depth of the task dependency graph,
which is a graph of the communication pattern between the
tasks defined by the algorithm (e.g., Figure 3). The deeper
the graph, the longer the execution. To reduce the execution
time, the graph can be reshaped to be shallower and wider.
Wider means more parallelism is possible, which requires
smaller compute tasks. In turn, it requires more communica-
tion, so it is essential that the communication overhead be low.
The width and depth of the dependency graph determine the
amount of communication as well as the size of the tasks.

3.1 A Simple Example: MergeMin

To illustrate the performance implications of a dependency
graph’s width vs. depth, we present a simple example: finding
the minimum value from a list of numbers. This could be done
sequentially, scanning the numbers while keeping a running
minimum. However, as we can see in Figure 2 this is limited
by the processing speed of a single core, which in turn is
limited by the I/O throughput, or cache misses (Figure 2b).

By using more workers, this process can be parallelized. It
cannot be fully parallelized, however; it requires some com-
munication between the workers to merge their minimum
values. This can be done using a merge tree, as shown in
Figure 3. At each level in the tree, a worker receives the mini-
mum value of one or more other workers; in turn, the worker

Figure 3: Lower incast results in deeper work trees

Reduction factor

E
la

ps
ed

 ti
m

e 
(n

s)
250

500

750

1,000

1,250

10 20 30 40 50 60

Figure 4: The runtime for MergeMin with increasing incast
size (64 cores, 128 values per core).

merges these minimums, and passes it down the tree.

This is repeated until reaching the root of the tree, where
a single worker merges the final minimum values. There are
two extremes of this merge tree: either very deep, or very
shallow. This determines the “incast”: the number of values
that are received and merged at each level in the tree. A very
shallow tree has large incast. This increases the latency for
each level of tree, because the merger worker has to receive
and process more minimum values. A deep tree has smaller
incasts, so each level is faster, but there are more levels. As
we can see in Figure 4, there is a trade-off between width and
depth, which has sweet spot with an incast size of 8.

The runtime depends on the choice of two parameters: the
granularity (i.e. the amount of work per worker, the inverse
of the number of workers), and the depth of the tree (deter-
mining the incast size). The two parameters cannot be chosen
independently. For example, if the granularity (number of
workers) is increased, the tree becomes wider. This will cause
the tree to become deeper, unless the incast size is increased.

4



3.2 Building Applications with Fine-Grained
Tasks

Although many applications are amenable to being imple-
mented with granular computing, applications that have real-
time latency requirements benefit the most from fine-grained
tasks. In some cases, such as interactive systems, it is more
important to provide a result in a timely fashion, rather than
optimize resource utilization (efficiency, throughput). Ap-
plications that have these requirements, and that are highly
parallelizable, are the best suited for granular computing.

Fine-grained computing is an especially good fit for inter-
active applications, like real time data analytics and graphics
processing. Stream processing systems like Spark ingest large
amounts of data and must quickly produce a result. Many of
its basic operations, like mapping (transforming) and reducing
(merging) data are easily parallelizable. Graphics processing,
like ray tracing, also has many operations that can be parel-
lelized. For example, constructing the bounding volume hier-
archy (BVH) requires sorting the objects in the scene. Web
search also has interactive requirements, and can be executed
with fine-grained tasks using set algebra operations [16].

Many of these applications exhibit the Map Reduce [11]
pattern, which is is a natural fit for granular computing. The
first step is to transform the input data, which can generally be
done independently, in parallel, by all the nanoTasks running
on different cores. The reduce step, however, requires coor-
dination among the cores. The design of the reduce (merge)
has important implications for how the granular program is
implemented.

It is essential not only to minimize the size of individual
tasks, but also the critical path through the dependency graph.
This requires the granular program to follow some design
principles:

• Asynchronous communication. Tasks should not block wait-
ing for responses after sending out a message. It is better to
use the “fire and forget” communication model and build
synchronization into the algorithm.

• Decentralized decision-making. Workers should make deci-
sions without a global coordinator, which could become a
bottleneck in the task dependency graph. This also allows
multiple threads to progress through the dependency graph
in parallel.

• Tiny tasks. Each task should be as small as possible and
entirely cache-resident.

• Even load distribution. In expectation, all tasks should pro-
cess the same amount of data and send/receive the same
amount of messages, independently of the workload.

Some of these guiding principles may seem obvious, but
there are some nuances when actually implementing them.
In the next section we discuss how they can be applied to a
specific application: sorting.

4 NanoSort Design

Over the years, the requirements and constraints faced by sort-
ing algorithms have continued to evolve [1, 6, 23, 42]. In the
early days, sorting was CPU bound, which was suitable for
algorithms that do arbitrary comparisons (e.g., InsertionSort,
BubbleSort, QuickSort). Then, it was limited by disk, so ex-
ternal sorting algorithms were designed to optimize I/O (e.g.,
reducing disk seeks [1]). More recently, as sorting has scaled
out to clusters [17, 35], distributed systems have adopted vari-
ous forms of BucketSort [42].

MilliSort is a bucket based sorting algorithm that mini-
mized network communication by dividing the algorithm into
two parts: partitioning and shuffling. During partitioning, a
subset of the nodes pick bucket boundaries, which are dissem-
inated to all other nodes. During the shuffle, the boundaries
are used to route records to the final node which is responsible
for a bucket.

These distributed sorting algorithms like MilliSort were
designed to minimize communication, in order to avoid net-
work overhead. Now that systems like the nanoPU provide
low-overhead communication, it is no longer necessary to
minimize communication. It may be actually beneficial to
communicate more. In the next section we describe the high-
level design of such an algorithm that takes advantage of
cheap communication.

4.1 Extremely Granular Sorting

There is no black-box way to convert an existing algorithm
into one that can be efficiently run on the nanoPU; to some
extent, the algorithm must be designed from scratch with an
eye towards balancing the per-node compute and communi-
cation times. Nevertheless, this algorithm design problem
need not be daunting. In the case of nanoSort, we arrived
at a simple and natural modification of quicksort, guided by
the following the general design principles of minimizing
unnecessary communication and exposing high-level “dials”
(or “knobs”) that tune the tradeoff between compute-per-node
and communication.

We now describe nanoSort. For the sake of simplicity and
clarity, throughout we assume that the set of keys are all dis-
tinct. By design, all operations in nanoSort are comparison-
based, and hence the execution depends only on the rela-
tive ordering of the keys, as opposed to their actual values.
For this reason, the runtime will not depend on the distribu-
tion of the underlying keys (e.g. uniformly distributed, vs
clustered/heavy-tailed, etc.).

NanoSort is a clean, recursive sorting algorithm that is a
variant of quicksort. At each level of recursion, the goal will
be to split up the set of keys into b “buckets” such that: 1)
all the keys in bucket i are less than those in bucket i+ 1,
and 2) the number of keys assigned to each bucket is roughly
equal for all buckets. We will then recurse on each bucket.

5



Crucially, after a given step of recursion, no communication
will be required between nodes corresponding to different
buckets.

To motivate the specific design decisions (beyond simply
setting the parameters such as the number of buckets at each
level of recursion, b, and the average number of keys per
node), we briefly discuss key considerations.

4.2 Balanced Buckets and Balanced Nodes

As with any variant of quicksort, one hopes that at each step
of recursion, the number of keys assigned to each bucket
is fairly uniform, since larger buckets would require either
deeper recursion or more time per step of recursion. Beyond
this, in our distributed setting, if some buckets are much larger
than others, we would need to ensure that the number of nodes
allocated to a given bucket is proportional to the number of
keys in the bucket. If that were not the case, if each of the
b buckets corresponded to the same number of nodes, then
nodes corresponding to buckets with more keys would end
up incurring significantly more incasts. Combined with the
greater number of recursive steps, this would be especially
debilitating. Of course, to ensure that a bucket is allocated a
proportional number of nodes would require counting (exactly,
or approximately via sampling) the number of keys in each
bucket.

To avoid these complications that would come with signif-
icant variation in the bucket sizes at each level of recursion,
we opt to expend slightly more communication to ensure
fairly uniform buckets. This is achieved via a two-pronged
approach. First, we ensure that the bucket sizes will be tightly
concentrated about their expectations—namely that we will
not expect much variation due to randomness in the execution
of the algorithm—and then we are careful to ensure that the ex-
pected size of all buckets are equal at a given step of the recur-
sion. The first step is accomplished via a “median-tree” that
approximates the median while being fairly communication
efficient. The second step uses no additional communication
but requires some care. We describe these two components
below.

For concreteness, suppose our goal is to define b = 10
buckets by selecting b− 1 “pivots”, p1 ≤ p2 ≤ . . . ≤ p9. A
naive and communication-efficient way to select these pivots
is simply to select 9 pivots uniformly at random (without
replacement) from the set of keys. This scheme has the fortu-
itous property that the expected quantile of pi is exactly i/10
(for example, in expectation, p2 will be larger than 20% of the
keys). The variance of the quantiles of these pivots (and hence
the variance of the corresponding bucket sizes), however, is
problematic. Indeed, there is a good chance that the largest
of the resulting buckets would have more than twice as many
keys as the smallest.

This issue is easy to fix in a communication-cheap man-
ner via a median-tree. Suppose we have N nodes that each

receive 9 uniformly random keys, and let p j
i denote the ith

smallest key received by the jth node. If we define pi =
median(p1

i , . . . , pN
i ), then the variance of the quantile of pi is

O(1/N), corresponding to a standard deviation of ≈ 1/
√

N.
This could be made arbitrarily small by choosing N to be large,
though at the expense of significant communication in the
computation of the median. Instead of computing the median
exactly, we approximate the median via a median tree: for ex-
ample, if N = 102, we can partition the N nodes into sets of 10,
and have each set of 10 report their medians to a designated
node, which then aggregates the 10 reported medians (one
from each set) by taking the median. Similarly, for N = 103,
a similar mechanism will result in the median-of-medians-of-
medians, requiring only 3 rounds of communication. This sort
of trick maintains much of the accuracy of the overall median,
while reducing the communication from linear in N, to loga-
rithmic. The issue with the above strategy, is that the expected
sizes of the buckets is no longer equal. If a node receives 9
keys drawn uniformly at random from the pool of keys, it is
the case that the expected quantile of the smallest received
key is 10%. If, however, we have N nodes that each receive 9
keys drawn uniformly from the set of keys, then the expected
quantile of the median of the smallest keys that each node
received is not 10%, but ≈ 7.5%. Phrased differently, if we
let D denote the distribution corresponding to the quantile of
the smallest key in a set of 9 keys chosen uniformly at random
from the entire set of keys, then the expectation of D is exactly
10%, but the median of D is ≈ 7.5%. This discrepancy be-
tween 10% and 7.5% means that the bucket corresponding to
keys that are at most p1 would be 25% smaller than we would
hope. After multiple rounds of recursion, this discrepancy is
compounded multiplicatively with each recursion.

To fix this issue, we simply need to take into account that
we are concerned with the median, rather than the expectation.
For example, suppose N nodes each receive 9 keys drawn
uniformly at random from the set of keys, and the ith node
sets pi

1 to be its smallest key with probably 0.8 and its second
smallest key with probability 0.2, then the expected quantile
of the median of these N numbers is ≈ 10%. Analogous mod-
ifications can similarly be made for the remaining buckets. In
this way, our algorithm is able to “fix” the expected quantiles
of all the bucket sizes in this manner. Figure 5 illustrates the
expected bucket sizes for the naive pivot selection, and two
other protocols.

The PivotSelect routine described below gives our specific
instantiation of this approach for the setting we implemented
where the number of buckets is 16.

Below we provide a more formal description of nanoSort.
We will require the number of nodes at our disposal to be a
power of the number of buckets that is used at each level of
our quicksort-like recursion.

6



Figure 5: Comparison of the expected bucket sizes for three
pivot selection strategies in the setting where the number of
buckets is 8, and the number of received keys is also 8. Naive
strategy: Select 7 pivots uniformly without replacement from
the 8 keys. Strategy 2: Sort the keys k1 ≤ k2 ≤ . . .≤ k8, and
with probability return k1,k2, . . . ,k7, and with probability 1/2
return k2,k3, . . . ,k8. Strategy 3: Randomize between the previ-
ous two strategies as follows: With probability 1/4 return the
pivots selected by the “Naive” strategy, and with probability
3/4 return the pivots selected by “Strategy 2”.

5 Implementation

We implemented granular computing applications, including
NanoSort, as nanoPU programs. In this section we describe
how we implemented the programs and the simulation cluster
that we use in our evaluation (Section 6).

5.1 nanoPU FireSim Simulation
The nanoPU is a SoC that extends the open-source RISC-V
Rocket-Chip SoC generator [5]. The Rocket core is a simple
five-stage, in-order, single-issue processor. We use the default
Rocket core configuration: 16KB L1 instruction and data
caches, a 512KB shared L2 cache, and 16GB of external
DRAM memory.

We use the Verilator [41] cycle-accurate simulator running
on top of FireSim [21]. FireSim enables us to run large-scale,
cycle-accurate simulations with tens of thousands of nanoPU
cores using AWS EC2 instances [2]. We simulate a target
clock rate of 3.2GHz—all reported results are in terms of
this target clock rate. The simulated servers are connected by
switch models implemented in C++ running on the AWS x86
host CPUs.

We used the same network topology for all experiments,
except for where noted otherwise. We used a two layer full-
bisection topology with 200Gbps links. Each leaf switch
has 64 downlinks to nanoPU NICs, and 64 uplinks to core
switches. The link latency is 43ns and the switching latency
is 263ns.

For our large-scale simulation, we ran 65,536 nanoPU cores
using 264 EC2 instances. Of the instances, 256 simulated the
nanoPU and leaf switches, while 8 instances simulated the
spine switches.

The original FireSim uses AWS F1 instances to accelarate

PivotSelect (16 Buckets)
Input parameters: n = number_keys_at_node, num_buckets.
Output: 15 pivots p1 ≤ p2 ≤ . . .≤ p15.

1. Sort the n keys k1 < k2 < .. . < kn.

2. If n = 16 : With probability 1/4 select 15 pivots uni-
formly at random without replacement from k1, . . . ,k16
and return them (sorted). With probability 3/8 re-
turn k1,k2, . . . ,k15, and with probability 3/8 return
k2,k3, . . . ,k16.

3. If n < 16: Select 16−n keys uniformly at random from
{k1, . . . ,kn} and duplicate them to form a list of 16 keys,
then select pivots as in the n = 16 setting.

4. n ∈ {17,18, . . . ,31} : Select a subset of 16 keys uni-
formly at random, and run the n = 16 protocol.

5. n = 32 : With probability 1/2 return the keys indexed by
the set [1,3,6,8,10,12,14,16,18,20,22,24,26,27,29],
and with probability 1/2 return the keys indexed by the
set [4,6,7,9,11,13,15,17,19,21,23,25,27,30,32].

6. n > 32 : Select a subset of 32 keys uniformly at random,
and run the n = 32 protocol.

the simulation with FPGAs. Running a simulation at this scale
with AWS F1 instances would be prohibitively expensive. We
found that the NanoSort execution time is so short, that it
is not worth the overhead of provisioning and flashing the
FPGA. Instead, we used cheaper general-purpose AWS com-
pute instances running the Verilator software-based simulator.
This required significant changes to FireSim, which we are
contributing back to the community.

5.2 Applications
We implemented microbenchmarks, MilliSort and NanoSort
programs in C using the nanoPU’s register-based communica-
tion API. All the programs rely on common code for initial-
ization and communication, as well as for the sort benchmark.

Communication A common property of both algorithms
is that they have “phases” or “steps”. Cores do not progress
through the steps in lockstep, so cores may be in different
steps from each other at the same point in time. Thus, a core
may receive messages for a subsequent step before it has
completed its current step. This requires reordering messages,
so that messages for the current step are processed before the
subsequent step.

Ideally the NIC would provide a reordering mechanism to
ensure that messages for the same step are delivered together.
This behaviour could be approximated by associating each

7



NanoSort
Input parameters: num_keys, num_buckets, num_nodes =
num_bucketsr.

Initial Step—Random Shuffle: After this step, the keys will be
randomly partitioned among the nodes subject to each node
having num_keys/num_nodes keys.

1. If num_nodes = 1 then sort the keys

2. Otherwise (ie num_nodes = num_bucketsr for r ≥ 1):

• For each node i, it sorts its keys, and extract a list
of b− 1 pivots pi

1 ≤ pi
2 ≤ . . . ≤ pi

b−1 from its set
of keys via the PivotSelect routine.

• Pivots p1, . . . , pb−1 are selected via b−1 median-
trees, where the jth median tree aggregates the pi

j’s
computed by each node to compute p j. The in-cast
(ie fan-in) and depth of the median-tree are chosen
appropriately to balance the compute time and the
variance-reduction.

• The pivots p1, . . . , pb−1 define b buckets (the first
bucket consists of values less than p1, the next
consists of values between p1 and p2, etc.) The
pivots are broadcast to the nodes, and the nodes
are partitioned into b equal sized sets (the first
num_nodes/b nodes are in one set, etc). Every
node sends each of its keys to a uniformly random
node in the appropriate bucket: for each key, if it is
in bucket i, it is sent to a node chosen uniformly at
random from the nodes in the ith partition.

3. Recursively apply the algorithm (starting at Step 1) to
each of the b buckets.

step with a different L4 port, which would associate different
steps with different NIC RX queues. This may lead to poor
RX queue utilization. Instead, we implemented a reordering
buffer in software.

Sort benchmark We perform the sorting according to the
GraySort benchmark [39]. Just like in MilliSort’s implemen-
tation [27], the cluster is pre-loaded with the sorting records
before starting the benchmark. The benchmark specifies that
each record be 100 bytes (a 10-byte key and a 90-byte value).
In order to have all the data aligned to 8-byte words for the
RISCV architecture, we deviate slightly from the specifica-
tion by using 104-byte records (8-byte key and 96-byte value).
The data on each core is structured with all the keys in a
contiguous block of memory, followed by all the values, in
corresponding order. When cores exchange keys, they also
include the original core ID of each key. This way, after all
the keys are sorted, the cores know where to find the original
record (including the value) for each of their keys. At the
end of the benchmark, the records are redistributed across the
cores in the cluster, with the keys and values in sorted order
in separate, contiguous memory regions.

5.3 Multicast Support
Although current commodity switches support multicast repli-
cation, they do not ensure reliable delivery. Naively layering
reliability on top of multicast is not so straight forward though,
as it leads to scalability problems such as the ACK implosion
problem [26], where the sender is flooded with an incast of
acknowledgement messages. However, promising results in
recent efforts [37] on in-network aggregation of ACKs sug-
gest that efficient reliable multicast is a not-so-distant reality.

Thus, since we believe it is reasonable to assume that the
network can provide reliable multicast, we extended FireSim’s
software switch to provide reliable multicast. When a switch
receives a multicast packet, it caches it before replicating it to
all members of the multicast group. The cached packet can
then be sent in response to a NACK or a timeout.

6 Evaluation

We evaluate the conjecture that with lower communication
overhead, it is worth farming out small pieces of compute.
Our main research questions are:

• With low communication overhead, what are the smallest
tasks possible?

• What is the importance of network characteristics, like
latency, tail latency, and group communication?

• Can large-scale extreme granular computing speed-up
an application like sorting?

8



Incast (number of messages)

Ti
m

e 
(n

s)

10

100

1,000

10,000

100,000

1 10 100

16B 64B 128B 256B 512BMessage sizes:

Figure 6: Time to receive increasing number of messages.

We first run some microbenchmarks to measure the effect
of parameters on the cost of performing small operations
locally, as well as sending and receiving messages. Then, we
show how these parameters are used in the design space of
sorting algorithms.

6.1 Microbenchmarks
In this section we explore the parameters that are necessary
for minimizing the granularity of tasks. This includes the cost
of local compute, as well the overhead for various communica-
tion patterns. These determine the ratio between compute and
communication. We use this to answer the question: how does
the compute/communication ratio affect application runtime?

We ran experiments to evaluate the MergeMin example
described in Section 3.1. Examining this simple example
helps us understand the parameters in the design space, before
examining the more complex NanoSort algorithm in the next
section.

First, we measure the individual parameters used for the
compute ratio: we look at the runtime for local operations
(finding the minimum value and sorting), and communication
operations (receiving/sending messages).

Figure 2a shows the time for a single RISC-V core to find
the minimum value from a list of integers. The min operation
is not compute bound (it consists mostly of comparison op-
erations), but it is limited by the I/O, as we can see from the
cache miss rate in Figure 2b. It takes 18us to find the mini-
mum of 8,192 values. This is clearly too long for a nanoTask
that should complete within hundreds of nanoseconds.

By using many cores in parallel, we can leverage the aggre-
gate I/O from all the cores’ caches. Ideally, with 64 cores, it
should take 1

64
th

of 18us (281ns) to find the minimum value.
However, this does not include communication. When struc-
turing communication using the merge tree described in Sec-
tion 3.1, we must consider the overhead for each core to re-
ceive messages.

Figure 6 shows the time for a single nanoPU core to receive
an increasing number of messages of various sizes. It takes
about 8ns to receive a single 16-byte message, and 400ns to
receive 64 messages. If one core were to receive and the min
values from 63 other cores, it would take about 400ns.

Figure 4 shows that there is a sweet spot for the number

Number of messages sent

S
en

d 
tim

e 
(n

s)

10

100

1,000

10,000

100,000

1 10 100 1000

16B 64B 256B 512BMessage sizes:

Figure 7: Time to send increasing number of messages.

of values to merge at each level of the merge tree. At one
extreme, with an incast of 1, the tree reduces to a straight line
(see Figure 3) where the runtime is dominated by propagation
delay. At the other extreme, with an incast of 64, the runtime
is bottle-necked by a single core receiving and merging all
the values. With an incast of 8, the tree has two levels, which
is the right trade-off between tree width and tree height: it
finds the minimum value in 750ns.

Although MergeMin is a simple example, it provides in-
sights into the design space and the parameters that affect
performance. It is important to carefully find the appropri-
ate balance of communication and per-core computation. We
must keep this in mind when considering the design of more
complex applications, as we will describe in the next section
with sorting.

6.2 Sorting Benchmark
We evaluate the effect of the parameters described above
on the performance of distributed sorting algorithms. We
start with a microbenchmark for sorting keys locally on a
single core, then we evaluate an existing distributed sorting
algorithm, MilliSort. Finally, we evaluate parameters in the
design space of NanoSort, and present results from large scale
simulations with 65,536 cores in the next section.

6.2.1 Local Sort

Figure 8 shows the time for a single RISC-V core to sort
an increasing number of keys (integers). Each point is the
average of 10 runs. We cleared the cache before each run,
so that they would all experience the effects of the cache
hierarchy. It takes over 30us to sort 1,024 keys, which is too
long for a nanoTask. The appropriate number of keys for a
nanoTask appears to be at most 64 keys.

6.2.2 MilliSort

Figure 9 shows the time for MilliSort to sort an increasing
number of cores with 16 keys per core. The partitioning phase
of the MilliSort algorithm picks the boundaries for each of
the final buckets, which equals the number of cores; the more
cores, the more bucket boundaries to pick. Thus, MilliSort’s
partition time increases with the number of cores, causing it

9



Number of keys

S
or

t t
im

e 
(n

s)

100

500
1,000

5,000
10,000

10 100 1000

Figure 8: Sorting locally with a single core.

Number of cores

M
ill

iS
or

t t
im

e 
(n

s)

100,000

200,000

300,000

400,000

64 128 192 256

Figure 9: MilliSort runtime on nanoPU with increasing num-
ber of cores (4,096 keys, 4 incast)

to scale poorly to hundreds of cores. As we see in Figure 9,
MilliSort’s runtime jumps from 61us with 64 cores, to 400us
with 256 cores.

To decrease MilliSort’s runtime, we tried varying its key
parameter: the “reduction factor”, which controls the number
of pivot sorters per core (essentially, the incast). Figure 10
shows that increasing MilliSort’s reduction factor causes a
slowdown. This is because each pivot sorter must process a
larger incast.

6.2.3 NanoSort

We evaluate the effect of NanoSort “knobs”, as well as the
importance of network characteristics, including low switch-
ing latency, low tail latency and multicast support. Finally, we
show the NanoSort runtime using 65,536 cores.

Tuning NanoSort knobs. Section 4 describes “knobs” that
affect the performance of NanoSort: the bucket size, keys per
core and total number of cores.

We ran NanoSort with a varying number of buckets, and
fixed number of cores and keys per core. Figure 11a shows that
with 4,096 cores and 32 keys/core, using 4, 8 or 16 buckets has
similar performance. This is despite the fact that they generate
different amounts of network traffic (Figure 11b). This is
because, as shown with the microbenchmarks in Section 6.1,
there is a trade-off between the tree depth and width.

We ran NanoSort on 4,096 cores with an increasing num-
ber of keys, as shown in Figure 12. As the number of keys
increases along the x-axis, as does the number of keys per
core (e.g. 16K keys uses 4 keys/core, and 262K keys uses
64 keys/core). The runtime seems to increase linearly, which

Reduction factor

M
ill

iS
or

t t
im

e 
(n

s)

100,000

200,000

300,000

4 8 12 16

Figure 10: MilliSort runtime on nanoPU with different incast
sizes (128 cores, 4,096 keys)

NanoSort buckets

N
an

oS
or

t t
im

e 
(n

s)

20,000

40,000

60,000

80,000

4 8 12 16 20 24 28 32

(a) Runtime

NanoSort buckets

To
ta

l m
es

sa
ge

s

250,000

500,000

750,000

1,000,000

4 8 12 16 20 24 28 32

(b) Traffic

Figure 11: Effect of varying the number of buckets (4096
cores, 32 keys/core, 263ns switch latency).

is because the work per core increases proportionally to the
number of keys.

Number of keys

N
an

oS
or

t t
im

e 
(n

s)

25,000

50,000

75,000

100,000

50k 100k 150k 200k 250k

Figure 12: Sorting an increasing number of keys with a fixed
number of cores (4,096 cores, 263ns switch latency).

10



Number of keys

M
ax

 b
uc

ke
t s

ke
w

1

2

3

4

5

50k 100k 150k 200k 250k

Figure 13: Skew reduces with an increasing number of keys
per core (4,096 cores, 263ns switch latency).

p99 latency (ns)

N
an

oS
or

t t
im

e 
(n

s)

20,000

40,000

60,000

1000 2000 3000

Figure 14: Effect of tail latency (256 cores, 8 buckets, 32
keys/core, 263ns switch latency)

As the total number of keys increases, the maximum skew
of the final buckets decreases (Figure 13). This is because the
keys per core increases, so each core has better “visibility”
of the distribution, and is able to pick better medians for the
bucket boundaries.

Switching latency. Figure 15 shows the effect of the switch-
ing latency on NanoSorting 1K keys with 64 cores. As ex-
pected, as the switching latency increases, so does the runtime.
This is because the cores spend more time idling, waiting for
messages, as we can see in Figure 15b.

Tail latency. Not only is the minimum communication
time (switching latency) important, but also the tail. We ran
NanoSort on 256 cores with 131K keys, and injected an ad-
ditional latency to 1% of messages (i.e. the 99th percentile
tail latency). Figure 14 shows how increasing this 99th per-
centile latency affects runtime. With a p99 latency of 4000ns,
NanoSort takes 53µs, double the baseline time of 26µs. When
so many messages are sent (38K messages in this experiment)
it is inevitable that the tail latency will be experienced. This
demonstrates that it is crucial that the latency of the tail be
minimized.

Multicast support. We ran NanoSort on 4,096 cores with
and without multicast support in the network. Without multi-

Switch latency (ns)

R
un

tim
e 

(n
s)

50,000

100,000

150,000

0 500 1000 1500 2000

(a) Runtime

Switch latency (ns)

Id
le

 ti
m

e

0%

50%

100%

0 500 1000 1500 2000

(b) Idle time

Figure 15: Effect of switching latency on NanoSort (64 cores,
16 keys/core).

cast, when a core picks a median, it must individually send it
to all other nodes in its group. In the first level of recursion,
this means sending the same message to all other 4,096 nodes.
The the effect is clear: without multicast, NanoSort takes 96µs;
adding multicast support reduces the number of messages sent
by 18%, and the runtime to 40µs (2.4x speedup).

6.3 Datacenter-Scale NanoSorting

To see whether NanoSort can scale to thousands of cores, we
ran a large scale simulation of 65,536 nanoPU cores using
4,224 AWS EC2 vCPUs. We measured the time for NanoSort
to sort 1M keys (16 keys per node and 16 buckets). Of 10
runs, all took less than 78µs, with an average time of 68µs
(4.127µs standard deviation). For comparison, this is an order
of magnitude faster than MilliSort running on a HPC cluster,
which sorts 0.9M keys in 1ms [27]. The state of the art sorting
algorithm for multicore systems, IPS4o, sorts 1M keys in
2ms [7].

Execution breakdown Figure 16a shows the distribution
of time spent on each stage for all the cores. We can see that
there is some variance, but it is modest. The first stage (level
of recursion 0) is the fastest. It also has the least variance,
because all the workers start at the same time, have exactly the
same number of initial keys, and perform the same operation
(send/receive each key). The variance in the other stages is
not due to compute time, but the time the core spends idle,
waiting for messages from other cores (possibly still in previ-
ous stages). Figure 16b shows the distribution of idle times
for the cores on each stage. There is less variance in idle time
in the first stages. In the last stage, shuffling, the cores are

11



CPU Cores SMT 1M sort (µs) Tput (records/ms/core)

NanoSort RISC-V Rocket @ 3.2GHz 65,536 1 68 224
MilliSort Xeon Gold 6148 @ 2.4GHz 2,240 1 1000 1297
TencentSort IBM POWER8 @ 2.9GHz 10,240 8 N/A 1977
CloudRAMSort Xeon X5680 @ 2.9GHz 3,072 2 N/A 707

Table 2: Per-core efficiency comparison. The throughputs are measured from sorting different numbers of records on each system:
1M with NanoSort, 26M with MilliSort, 10B with TencentSort and CloudRAMSort.

Stage

Ti
m

e 
(u

s)

0

10

20

30

l0 l1 l2 l3 Shuffle

(a) Execution time

Stage

Id
le

 ti
m

e 
(%

)

0

25

50

75

10

l0 l1 l2 l3 Shuffle

(b) Idle time

Figure 16: Execution breakdown for NanoSort with 65,536
cores.

sending and receiving the final values, so they are constantly
active until completion.

Efficiency Table 2 compares the sorting throughput of
NanoSort to MilliSort and other systems in the GraySort
benchmark. There are multiple reasons why NanoSort has a
lower per-core throughput than the other systems: it is sorting
fewer records (1M) than the other systems; it has wimpier
cores without SMT (8x less than TencentSort); and it is us-
ing many more cores. There is a trade-off between latency
and throughput: sorting with a tight time budget comes at the
expense of reduced efficiency.

7 Related Work

NanoSort explores a new extreme of granular computing us-
ing new low-latency communication designs and sorting al-
gorithms.

Distributed sorting algorithms. Parallel sorting algo-
rithms were designed for multi-core systems, and were ini-
tially limited by disk I/O [1,42,43]. AlphaSort [31] addresses
this bottleneck with cache-sensitive external sort. Various
sampling-based techniques have been proposed for sorting
on a single machine: IPS4o [7] describes a distribution sort
optimized for multi-core machines and LearnedSort [24] cre-
ates a hierarchecal model to determine bucket boundaries.
Manycore GPUs can be used to accelerate radix and merge
sorts [38]. Some systems are designed for high-throughput
(as opposed to low-latency): CloudRAMSort [22], Triton-
Sort [35] and TencentSort [17] perform large scale sort using
hundreds of machines.

Low-latency communication. eRPC [20] reduces RTT
with off-the-shelf NICs. The nanoPU [16] and NeBULA [40]
prototype new low-latency NIC/CPU codesigns. While NeB-
ULA delivers messages to the cache, the nanoPU delivers
messages straight to the CPU register file, with has a lower
latency. Shinjuku [19], Shenango [32] and Zygos [34] explore
OS scheduling to reduce request latency.

Granular computing. Our work addresses the questions
raised by Lee et. al in their position paper on granular com-
puting [25]. Other work has investigated increasing paral-
lelism [12,13,18] for interactive applications and for handling
“bursts”, like millisort [27].

8 Conclusion

The datasets processed by real-time systems is growing in
size. If they are to continue providing interactive results, they
must scale out, increasing parallelism and in turn, granularity.
As granularity increases, the communication overhead and
coordination dominates the processing time. We show how
new network design and new algorithms can be leveraged to
reduce the communication overhead and scale out with the
dataset.

12



References

[1] Alok Aggarwal and S. Vitter, Jeffrey. The input/output
complexity of sorting and related problems. Commun.
ACM, 31(9):1116–1127, sep 1988.

[2] Amazon ec2 instance types. https://aws.amazon.
com/ec2/instance-types/. Accessed on 2022-01-
12.

[3] Gene M Amdahl. Validity of the single processor ap-
proach to achieving large scale computing capabilities.
In Proceedings of the April 18-20, 1967, spring joint
computer conference, pages 483–485, 1967.

[4] Michael Armbrust, Armando Fox, Rean Griffith, An-
thony D. Joseph, Randy H. Katz, Andrew Konwinski,
Gunho Lee, David A. Patterson, Ariel Rabkin, Ion Sto-
ica, and Matei Zaharia. Above the clouds: A berkeley
view of cloud computing. Technical Report UCB/EECS-
2009-28, EECS Department, University of California,
Berkeley, Feb 2009.

[5] Krste Asanovic, Rimas Avizienis, Jonathan Bachrach,
Scott Beamer, David Biancolin, Christopher Celio,
Henry Cook, Daniel Dabbelt, John Hauser, Adam
Izraelevitz, et al. The rocket chip generator. EECS
Department, University of California, Berkeley, Tech.
Rep. UCB/EECS-2016-17, 2016.

[6] Owen Astrachan. Bubble sort: An archaeological algo-
rithmic analysis. In Proceedings of the 34th SIGCSE
Technical Symposium on Computer Science Education,
SIGCSE ’03, page 1–5, New York, NY, USA, 2003. As-
sociation for Computing Machinery.

[7] Michael Axtmann, Sascha Witt, Daniel Ferizovic, and
Peter Sanders. In-Place Parallel Super Scalar Sample-
sort (IPSSSSo). In 25th Annual European Symposium
on Algorithms (ESA 2017), volume 87 of Leibniz In-
ternational Proceedings in Informatics (LIPIcs), pages
9:1–9:14. Schloss Dagstuhl–Leibniz-Zentrum fuer In-
formatik, 2017.

[8] Luiz Barroso, Mike Marty, David Patterson, and
Parthasarathy Ranganathan. Attack of the killer mi-
croseconds. Communications of the ACM, 60(4):48–54,
2017.

[9] B. A. W. Baugstø, J. F. Greipsland, and J. Kamerbeek.
Sorting large data files on pooma. In Proceedings of
the Joint International Conference on Vector and Par-
allel Processing, CONPAR 90, page 536–547, Berlin,
Heidelberg, 1990. Springer-Verlag.

[10] Qizhe Cai, Shubham Chaudhary, Midhul Vuppalapati,
Jaehyun Hwang, and Rachit Agarwal. Understanding

host network stack overheads. In Proceedings of the
2021 ACM SIGCOMM 2021 Conference, SIGCOMM
’21, page 65–77, New York, NY, USA, 2021. Association
for Computing Machinery.

[11] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Sim-
plified data processing on large clusters. In OSDI’04:
Sixth Symposium on Operating System Design and Im-
plementation, pages 137–150, San Francisco, CA, 2004.

[12] Sadjad Fouladi, Dan Iter, Shuvo Chatterjee, Christos
Kozyrakis, Matei Zaharia, and Keith Winstein. A thunk
to remember: make-j1000 (and other jobs) on functions-
as-a-service infrastructure, 2017.

[13] Sadjad Fouladi, Riad S Wahby, Brennan Shacklett,
Karthikeyan Vasuki Balasubramaniam, William Zeng,
Rahul Bhalerao, Anirudh Sivaraman, George Porter, and
Keith Winstein. Encoding, Fast and Slow: Low-latency
Video Processing Using Thousands of Tiny Threads. In
USENIX NSDI, 2017.

[14] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty,
Priyal Rathi, Nayan Katarki, Ariana Bruno, Justin Hu,
Brian Ritchken, Brendon Jackson, Kelvin Hu, Meghna
Pancholi, Yuan He, Brett Clancy, Chris Colen, Fukang
Wen, Catherine Leung, Siyuan Wang, Leon Zaruvinsky,
Mateo Espinosa, Rick Lin, Zhongling Liu, Jake Padilla,
and Christina Delimitrou. An open-source benchmark
suite for microservices and their hardware-software im-
plications for cloud & edge systems. In Proceedings
of the Twenty-Fourth International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems, ASPLOS ’19, page 3–18, New York,
NY, USA, 2019. Association for Computing Machinery.

[15] Mark Handley, Costin Raiciu, Alexandru Agache, An-
drei Voinescu, Andrew W Moore, Gianni Antichi, and
Marcin Wójcik. Re-architecting datacenter networks
and stacks for low latency and high performance. In Pro-
ceedings of the Conference of the ACM Special Interest
Group on Data Communication, pages 29–42, 2017.

[16] Stephen Ibanez, Alex Mallery, Serhat Arslan, Theo
Jepsen, Muhammad Shahbaz, Changhoon Kim, and
Nick McKeown. The nanopu: A nanosecond network
stack for datacenters. In 15th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
21), pages 239–256. USENIX Association, July 2021.

[17] Jie Jiang, Lixiong Zheng, Junfeng Pu, Xiong Cheng,
Chongqing Zhao, Mark R Nutter, and Jeremy D Schaub.
Tencent sort. Technical Report, 2016.

[18] Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Sto-
ica, and Benjamin Recht. Occupy the cloud: Distributed
computing for the 99%. In ACM SoCC, 2017.

13

https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/


[19] Kostis Kaffes, Timothy Chong, Jack Tigar Humphries,
Adam Belay, David Mazières, and Christos Kozyrakis.
Shinjuku: Preemptive scheduling for µsecond-scale tail
latency. In 16th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 19), pages
345–360, 2019.

[20] Anuj Kalia, Michael Kaminsky, and David Andersen.
Datacenter rpcs can be general and fast. In 16th
{USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 19), pages 1–16, 2019.

[21] Sagar Karandikar, Howard Mao, Donggyu Kim, David
Biancolin, Alon Amid, Dayeol Lee, Nathan Pemberton,
Emmanuel Amaro, Colin Schmidt, Aditya Chopra, et al.
Firesim: Fpga-accelerated cycle-exact scale-out system
simulation in the public cloud. In 2018 ACM/IEEE 45th
Annual International Symposium on Computer Architec-
ture (ISCA), pages 29–42. IEEE, 2018.

[22] Changkyu Kim, Jongsoo Park, Nadathur Satish,
Hongrae Lee, Pradeep Dubey, and Jatin Chhugani.
Cloudramsort: Fast and efficient large-scale distributed
ram sort on shared-nothing cluster. In Proceedings of
the 2012 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’12, page 841–850,
New York, NY, USA, 2012. Association for Computing
Machinery.

[23] Joseph B. Klerlein and Curtis Fullbright. A transition
from bubble to shell sort. In Proceedings of the Nine-
teenth SIGCSE Technical Symposium on Computer Sci-
ence Education, SIGCSE ’88, page 183–184, New York,
NY, USA, 1988. Association for Computing Machinery.

[24] Ani Kristo, Kapil Vaidya, Ugur Çetintemel, Sanchit
Misra, and Tim Kraska. The case for a learned sorting
algorithm. In Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data, SIG-
MOD ’20, page 1001–1016, New York, NY, USA, 2020.
Association for Computing Machinery.

[25] Collin Lee and John Ousterhout. Granular computing.
In Proceedings of the Workshop on Hot Topics in Op-
erating Systems, HotOS ’19, page 149–154, New York,
NY, USA, 2019. Association for Computing Machinery.

[26] Brian Neil Levine and Jose J Garcia-Luna-Aceves. A
comparison of reliable multicast protocols. Multimedia
systems, 6(5):334–348, 1998.

[27] Yilong Li, Seo Jin Park, and John Ousterhout. MilliSort
and MilliQuery: Large-Scale Data-Intensive computing
in milliseconds. In 18th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 21),
pages 593–611. USENIX Association, April 2021.

[28] Behnam Montazeri, Yilong Li, Mohammad Alizadeh,
and John Ousterhout. Homa: A receiver-driven low-
latency transport protocol using network priorities. In
Proceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication, pages 221–235,
2018.

[29] The GitHub link omitted for double-blind review.

[30] New intel xeon platinum 9022 server
packs 7 616 cores in a rack. https:
//www.crn.com/news/data-center/
new-intel-xeon-platinum-9200-server-packs-7-616-cores-in-a-rack.
Accessed on 2022-03-12.

[31] Chris Nyberg, Tom Barclay, Zarka Cvetanovic, Jim Gray,
and Dave Lomet. Alphasort: A cache-sensitive parallel
external sort. The VLDB Journal, 4(4):603–627, 1995.

[32] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam
Belay, and Hari Balakrishnan. Shenango: Achieving
high {CPU} efficiency for latency-sensitive datacen-
ter workloads. In 16th {USENIX} Symposium on Net-
worked Systems Design and Implementation ({NSDI}
19), pages 361–378, 2019.

[33] Florentina Popovici, John Bent, Brian Forney, Andrea
Arpaci-Dusseu, and Remzi Arpaci-Dusseau. Datama-
tion 2001: A sorting odyssey. Technical report, Uni-
versity of Wisconsin-Madison Department of Computer
Sciences, 2002.

[34] George Prekas, Marios Kogias, and Edouard Bugnion.
Zygos: Achieving low tail latency for microsecond-scale
networked tasks. In Proceedings of the 26th Symposium
on Operating Systems Principles, pages 325–341, 2017.

[35] Alexander Rasmussen, George Porter, Michael Con-
ley, Harsha V. Madhyastha, Radhika Niranjan Mysore,
Alexander Pucher, and Amin Vahdat. TritonSort: A bal-
anced Large-Scale sorting system. In 8th USENIX Sym-
posium on Networked Systems Design and Implemen-
tation (NSDI 11), Boston, MA, March 2011. USENIX
Association.

[36] Betty Salzberg, Alex Tsukerman, Jim Gray, Michael
Stuewart, Susan Uren, and Bonnie Vaughan. Fastsort:
A distributed single-input single-output external sort.
In Proceedings of the 1990 ACM SIGMOD Interna-
tional Conference on Management of Data, SIGMOD
’90, page 94–101, New York, NY, USA, 1990. Associa-
tion for Computing Machinery.

[37] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob
Nelson, Panos Kalnis, Changhoon Kim, Arvind Kr-
ishnamurthy, Masoud Moshref, Dan Ports, and Peter
Richtarik. Scaling distributed machine learning with In-
Network aggregation. In 18th USENIX Symposium on

14

https://www.crn.com/news/data-center/new-intel-xeon-platinum-9200-server-packs-7-616-cores-in-a-rack
https://www.crn.com/news/data-center/new-intel-xeon-platinum-9200-server-packs-7-616-cores-in-a-rack
https://www.crn.com/news/data-center/new-intel-xeon-platinum-9200-server-packs-7-616-cores-in-a-rack


Networked Systems Design and Implementation (NSDI
21), pages 785–808. USENIX Association, April 2021.

[38] Nadathur Satish, Mark Harris, and Michael Garland. De-
signing efficient sorting algorithms for manycore gpus.
In Proceedings of the 2009 IEEE International Sympo-
sium on Parallel & Distributed Processing, IPDPS ’09,
page 1–10, USA, 2009. IEEE Computer Society.

[39] Sort benchmark home page. https://sortbenchmark.
org/. Accessed on 2022-01-21.

[40] Mark Sutherland, Siddharth Gupta, Babak Falsafi, Viren-
dra Marathe, Dionisios Pnevmatikatos, and Alexandros

Daglis. The nebula rpc-optimized architecture. Techni-
cal report, EcoCloud, EPFL, 2020.

[41] Verilator. https://www.veripool.org/wiki/
verilator. Accessed on 2020-01-29.

[42] J. Vitter and E. Lindstrom. The design and analysis of
bucketsort for bubble memory secondary storage. IEEE
Transactions on Computers, 34(03):218–233, mar 1985.

[43] Jeffrey Scott Vitter. Algorithms and data structures for
external memory. Now Publishers Inc, 2008.

15

https://sortbenchmark.org/
https://sortbenchmark.org/
https://www.veripool.org/wiki/verilator
https://www.veripool.org/wiki/verilator

	1 Introduction
	2 Low Latency Communication Systems
	2.1 nanoPU Background

	3 Extremely Granular Computing
	3.1 A Simple Example: MergeMin
	3.2 Building Applications with Fine-Grained Tasks

	4 NanoSort Design
	4.1 Extremely Granular Sorting
	4.2 Balanced Buckets and Balanced Nodes

	5 Implementation
	5.1 nanoPU FireSim Simulation
	5.2 Applications
	5.3 Multicast Support

	6 Evaluation
	6.1 Microbenchmarks
	6.2 Sorting Benchmark
	6.2.1 Local Sort
	6.2.2 MilliSort
	6.2.3 NanoSort

	6.3 Datacenter-Scale NanoSorting

	7 Related Work
	8 Conclusion

