
TCP ex Machina: Computer-Generated Congestion Control

Keith Winstein and Hari Balakrishnan
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology, Cambridge, Mass.
{keithw, hari}@mit.edu

ABSTRACT
This paper describes a new approach to end-to-end congestion con-
trol on a multi-user network. Rather than manually formulate each
endpoint’s reaction to congestion signals, as in traditional protocols,
we developed a program called Remy that generates congestion-
control algorithms to run at the endpoints.

In this approach, the protocol designer specifies their prior
knowledge or assumptions about the network and an objective that
the algorithm will try to achieve, e.g., high throughput and low
queueing delay. Remy then produces a distributed algorithm—the
control rules for the independent endpoints—that tries to achieve
this objective.

In simulations with ns-2, Remy-generated algorithms outper-
formed human-designed end-to-end techniques, including TCP Cu-
bic, Compound, and Vegas. In many cases, Remy’s algorithms also
outperformed methods that require intrusive in-network changes,
including XCP and Cubic-over-sfqCoDel (stochastic fair queueing
with CoDel for active queue management).

Remy can generate algorithms both for networks where some
parameters are known tightly a priori, e.g. datacenters, and for net-
works where prior knowledge is less precise, such as cellular net-
works. We characterize the sensitivity of the resulting performance
to the specificity of the prior knowledge, and the consequences
when real-world conditions contradict the assumptions supplied at
design-time.

CATEGORIES AND SUBJECT DESCRIPTORS
C.2.1 [Computer-Communication Networks]: Network Archi-
tecture and Design — Network communications

KEYWORDS
congestion control, computer-generated algorithms

1. INTRODUCTION
Is it possible for a computer to “discover” the right rules for con-

gestion control in heterogeneous and dynamic networks? Should
computers, rather than humans, be tasked with developing conges-
tion control methods? And just how well can we make computers
perform this task?

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGCOMM’13, August 12–16, 2013, Hong Kong, China.
Copyright is held by the owner/author(s). Publication rights licensed to
ACM. 978-1-4503-2056-6/13/08 ...$15.00.

Prior assumptions
about network

Traffic model

Objective function

Remy

Existing
TCP

ns-2
TCP

RemyCC

Figure 1: Remy designs congestion-control schemes automati-
cally to achieve desired outcomes. The algorithms it produces
may replace the congestion-control module of a TCP implemen-
tation, and fit into a network library or kernel module that
implements congestion control (DCCP, SCTP, the congestion
manager, application-layer transmission control libraries, ns-2
modules, etc.).

We investigated these questions and found that computers can de-
sign schemes that in some cases surpass the best human-designed
methods to date, when supplied with the appropriate criteria by
which to judge a congestion-control algorithm. We attempt to probe
the limits of these machine-generated protocols, and discuss how
this style of transport-layer protocol design can give more freedom
to network architects and link-layer designers.

Congestion control, a fundamental problem in multi-user com-
puter networks, addresses the question: when should an endpoint
transmit each packet of data? An ideal scheme would transmit a
packet whenever capacity to carry the packet was available, but be-
cause there are many concurrent senders and the network experi-
ences variable delays, this question isn’t an easy one to answer. On
the Internet, the past thirty years have seen a number of innova-
tive and influential answers to this question, with solutions embed-
ded at the endpoints (mainly in TCP) aided occasionally by queue
management and scheduling algorithms in bottleneck routers that
provide signals to the endpoints.

This area has continued to draw research and engineering effort
because new link technologies and subnetworks have proliferated
and evolved. For example, the past few years have seen an increase
in wireless networks with variable bottleneck rates; datacenter net-
works with high rates, short delays, and correlations in offered load;
paths with excessive buffering (now called “bufferbloat”); cellu-
lar wireless networks with highly variable, self-inflicted packet de-
lays; links with non-congestive stochastic loss; and networks with

123

large bandwidth-delay products. In these conditions, the classical
congestion-control methods embedded in TCP can perform poorly,
as many papers have shown (§2).

Without the ability to adapt its congestion-control algorithms to
new scenarios, TCP’s inflexibility constrains architectural evolu-
tion, as we noted in an earlier position paper [43]. Subnetworks
and link layers are typically evaluated based on how well TCP per-
forms over them. This scorecard can lead to perverse behavior,
because TCP’s network model is limited. For example, because
TCP assumes that packet losses are due to congestion and reduces
its transmission rate in response, some subnetwork designers have
worked hard to hide losses. This often simply adds intolerably long
packet delays. One may argue that such designs are misguided, but
the difficulties presented by “too-reliable” link layers have been a
perennial challenge for 25 years [12] and show no signs of abating.
With the rise of widespread cellular connectivity, these behaviors
are increasingly common and deeply embedded in deployed infras-
tructure.

The designers of a new subnetwork may well ask what they
should do to make TCP perform well. This question is surpris-
ingly hard to answer, because the so-called teleology of TCP is un-
known: exactly what objective does TCP congestion control opti-
mize? TCP’s dynamic behavior, when competing flows enter and
leave the network, remains challenging to explain [7]. In practice,
the need to “make TCP perform well” is given as a number of loose
guidelines, such as IETF RFC 3819 [23], which contains dozens of
pages of qualitative best current practice. The challenging and sub-
tle nature of this area means that the potential of new subnetworks
and network architectures is often not realized.

Design overview
How should we design network protocols that free subnetworks and
links to evolve freely, ensuring that the endpoints will adapt prop-
erly no matter what the lower layers do? We believe that the best
way to approach this question is to take the design of specific algo-
rithmic mechanisms out of the hands of human designers (no matter
how sophisticated!), and make the end-to-end algorithm be a func-
tion of the desired overall behavior.

We start by explicitly stating an objective for congestion control;
for example, given an unknown number of users, we may optimize
some function of the per-user throughput and packet delay, or a
summary statistic such as average flow completion time. Then, in-
stead of writing down rules by hand for the endpoints to follow, we
start from the desired objective and work backwards in three steps:

1. First, model the protocol’s prior assumptions about the net-
work; i.e., the “design range” of operation. This model may
be different, and have different amounts of uncertainty, for
a protocol that will be used exclusively within a data center,
compared with one intended to be used over a wireless link or
one for the broader Internet. A typical model specifies upper
and lower limits on the bottleneck link speeds, non-queueing
delays, queue sizes, and degrees of multiplexing.

2. Second, define a traffic model for the offered load given to
endpoints. This may characterize typical Web traffic, video
conferencing, batch processing, or some mixture of these. It
may be synthetic or based on empirical measurements.

3. Third, use the modeled network scenarios and traffic to de-
sign a congestion-control algorithm that can later be executed
on endpoints.

We have developed an optimization tool called Remy that takes
these models as input, and designs a congestion-control algorithm

that tries to maximize the total expected value of the objective func-
tion, measured over the set of network and traffic models. The re-
sulting pre-calculated, optimized algorithm is then run on actual
endpoints; no further learning happens after the offline optimiza-
tion. The optimized algorithm is run as part of an existing TCP
sender implementation, or within any congestion-control module.
No receiver changes are necessary (as of now).

Summary of results
We have implemented Remy. Running on a 48-core server at MIT,
Remy generally takes a few hours of wall-clock time (one or two
CPU-weeks) to generate congestion-control algorithms offline that
work on a wide range of network conditions.

Our main results from several simulation experiments with Remy
are as follows:

1. For networks broadly consistent with the assumptions pro-
vided to Remy at design time, the machine-generated algo-
rithms dramatically outperform existing methods, including
TCP Cubic, Compound TCP, and TCP Vegas.

2. Comparing Remy’s algorithms with schemes that require
modifications to network gateways, including Cubic-over-
sfqCoDel and XCP, Remy generally matched or surpassed
these schemes, despite being entirely end-to-end.

3. We measured the tradeoffs that come from specificity in the
assumptions supplied to Remy at design time. As expected,
more-specific prior information turned out to be helpful when
it was correct, but harmful when wrong. We found that Re-
myCC schemes performed well even when designed for an
order-of-magnitude variation in the values of the underlying
network parameters.

On a simulated 15 Mbps fixed-rate link with eight senders con-
tending and an RTT of 150 ms, a computer-generated congestion-
control algorithm achieved the following improvements in median
throughput and reductions in median queueing delay over these ex-
isting protocols:

Protocol Median speedup Median delay reduction
Compound 2.1× 2.7×
NewReno 2.6× 2.2×
Cubic 1.7× 3.4×
Vegas 3.1× 1.2×
Cubic/sfqCoDel 1.4× 7.8×
XCP 1.4× 4.3×

In a trace-driven simulation of the Verizon LTE downlink with
four senders contending, the same computer-generated protocol
achieved these speedups and reductions in median queueing delay:

Protocol Median speedup Median delay reduction
Compound 1.3× 1.3×
NewReno 1.5× 1.2×
Cubic 1.2× 1.7×
Vegas 2.2× 0.44× ↓
Cubic/sfqCoDel 1.3× 1.3×
XCP 1.7× 0.78× ↓

The source code for Remy, our ns-2 models, and the algorithms
that Remy designed are available from http://web.mit.edu/remy.

2. RELATED WORK
Starting with Ramakrishnan and Jain’s DECBit scheme [36] and

Jacobson’s TCP Tahoe (and Reno) algorithms [21], congestion con-
trol over heterogeneous packet-switched networks has been an ac-
tive area of research. End-to-end algorithms typically compute a
congestion window (or, in some cases, a transmission rate) as well

124

http://web.mit.edu/remy

as the round-trip time (RTT) using the stream of acknowledgments
(ACKs) arriving from the receiver. In response to congestion, in-
ferred from packet loss or, in some cases, rising delays, the sender
reduces its window; conversely, when no congestion is perceived,
the sender increases its window.

There are many different ways to vary the window. Chiu and
Jain [10] showed that among linear methods, additive increase /
multiplicative decrease (AIMD) converges to high utilization and
a fair allocation of throughputs, under some simplifying assump-
tions (long-running connections with synchronized and instanta-
neous feedback). Our work relaxes these assumptions to handle
flows that enter and leave the network, and users who care about
latency as well as throughput. Remy’s algorithms are not necessar-
ily linear, and can use both a window and a rate pacer to regulate
transmissions.

In this paper, we compare Remy’s generated algorithms with
several end-to-end schemes, including NewReno [19], Vegas [9],
Compound TCP [39], Cubic [18], and DCTCP for datacenters [2].
NewReno has the same congestion-control strategy as Reno—slow
start at the beginning, on a timeout, or after an idle period of about
one retransmission timeout (RTO), additive increase every RTT
when there is no congestion, and a one-half reduction in the win-
dow on receiving three duplicate ACKs (signaling packet loss). We
compare against NewReno rather than Reno because NewReno’s
loss recovery is better.

Brakmo and Peterson’s Vegas is a delay-based algorithm, mo-
tivated by the insight from Jain’s CARD scheme [22] and Wang
and Crowcroft’s DUAL scheme [41] that increasing RTTs may be
a congestion signal. Vegas computes a BaseRTT, defined as the
RTT in the absence of congestion, and usually estimated as the first
RTT on the connection before the windows grow. The expected
throughput of the connection is the ratio of the current window size
and BaseRTT, if there is no congestion; Vegas compares the ac-
tual sending rate, and considers the difference, diff, between the
expected and actual rates. Depending on this difference, Vegas ei-
ther increases the congestion window linearly (diff < α), reduces it
linearly (diff > β), or leaves it unchanged.

Compound TCP [39] combines ideas from Reno and Vegas:
when packet losses occur, it uses Reno’s adaptation, while react-
ing to delay variations using ideas from Vegas. Compound TCP is
more complicated than a straightforward hybrid of Reno and Ve-
gas; for example, the delay-based window adjustment uses a bino-
mial algorithm [6]. Compound TCP uses the delay-based window
to identify the absence of congestion rather than its onset, which is
a key difference from Vegas.

Rhee and Xu’s Cubic algorithm is an improvement over their pre-
vious work on BIC [45]. Cubic’s growth is independent of the RTT
(like H-TCP [29]), and depends only on the packet loss rate, in-
crementing as a cubic function of “real” time. Cubic is known to
achieve high throughput and fairness independent of RTT, but it
also aggressively increases its window size, inflating queues and
bloating RTTs (see §5).

Other schemes developed in the literature include equation-
based congestion control [16], binomial control [6], FastTCP [42],
HSTCP, and TCP Westwood [30].

End-to-end control may be improved with explicit router par-
ticipation, as in Explicit Congestion Notification (ECN) [15],
VCP [44], active queue management schemes like RED [17],
BLUE [14], CHOKe [35], AVQ [27], and CoDel [33] fair queue-
ing, and explicit methods such as XCP [24] and RCP [38]. AQM
schemes aim to prevent persistent queues, and have largely focused
on reacting to growing queues by marking packets with ECN or
dropping them even before the queue is full. CoDel changes the

model from reacting to specific average queue lengths to reacting
when the delays measured over some duration are too long, sug-
gesting a persistent queue. Scheduling algorithms isolate flows or
groups of flows from each other, and provide weighted fairness be-
tween them. In XCP and RCP, routers place information in packet
headers to help the senders determine their window (or rate). One
limitation of XCP is that it needs to know the bandwidth of the out-
going link, which is difficult to obtain accurately for a time-varying
wireless channel.

In §5, we compare Remy’s generated algorithm with XCP and
with end-to-end schemes running through a gateway with the CoDel
AQM and stochastic fair queueing (sfqCoDel).

TCP congestion control was not designed with an explicit opti-
mization goal in mind, but instead allows overall network behav-
ior to emerge from its rules. Kelly et al. present an interpretation
of various TCP congestion-control variants in terms of the implicit
goals they attempt to optimize [25]. This line of work has become
known as Network Utility Maximization (NUM); more recent work
has modeled stochastic NUM problems [46], in which flows enter
and leave the network. Remy may be viewed as combining the de-
sire for practical distributed endpoint algorithms with the explicit
utility-maximization ethos of stochastic NUM.

We note that TCP stacks have adapted in some respects to the
changing Internet; for example, increasing bandwidth-delay prod-
ucts have produced efforts to increase the initial congestion win-
dow [13, 11], including recent proposals [3, 40] for this quantity to
automatically increase on the timescale of months or years. What
we propose in this paper is an automated means by which TCP’s en-
tire congestion-control algorithm, not just its initial window, could
adapt in response to empirical variations in underlying networks.

3. MODELING THE CONGESTION-CONTROL
PROBLEM

We treat congestion control as a problem of distributed decision-
making under uncertainty. Each endpoint that has pending data
must decide for itself at every instant: send a packet, or don’t send
a packet.

If all nodes knew in advance the network topology and capacity,
and the schedule of each node’s present and future offered load,
such decisions could in principle be made perfectly, to achieve a
desired allocation of throughput on shared links.

In practice, however, endpoints receive observations that only
hint at this information. These include feedback from receivers con-
cerning the timing of packets that arrived and detection of packets
that didn’t, and sometimes signals, such as ECN marks, from within
the network itself. Nodes then make sending decisions based on this
partial information about the network.

Our approach hinges on being able to evaluate quantitatively the
merit of any particular congestion control algorithm, and search for
the best algorithm for a given network model and objective func-
tion. We discuss here our models of the network and cross traffic,
and how we ultimately calculate a figure of merit for an arbitrary
congestion control algorithm.

3.1 Expressing prior assumptions about the network
From a node’s perspective, we treat the network as having been

drawn from a stochastic generative process. We assume the network
is Markovian, meaning that it is described by some state (e.g. the
packets in each queue) and its future evolution will depend only on
the current state.

Currently, we typically parametrize networks on three axes: the
speed of bottleneck links, the propagation delay of the network
paths, and the degree of multiplexing, i.e., the number of senders

125

contending for each bottleneck link. We assume that senders have
no control over the paths taken by their packets to the receiver.

Depending on the range of networks over which the protocol
is intended to be used, a node may have more or less uncertainty
about the network’s key parameters. For example, in a data center,
the topology, link speeds, and minimum round-trip times may be
known in advance, but the degree of multiplexing could vary over a
large range. A virtual private network between “clouds” may have
more uncertainty about the link speed. A wireless network path
may experience less multiplexing, but a large range of transmission
rates and round-trip times.

As one might expect, we have observed a tradeoff between gen-
erality and performance; a protocol designed for a broad range of
networks may be beaten by a protocol that has been supplied with
more specific and accurate prior knowledge. Our approach allows
protocol designers to measure this tradeoff and choose an appropri-
ate design range for their applications.

3.2 Traffic model
Remy models the offered load as a stochastic process that

switches unicast flows between sender-receivers pairs on or off. In
a simple model, each endpoint has traffic independent of the other
endpoints. The sender is “off” for some number of seconds, drawn
from an exponential distribution. Then it switches on for some
number of bytes to be transmitted, drawn from an empirical distri-
bution of flow sizes or a closed-form distribution (e.g. heavy-tailed
Pareto). While “on,” we assume that the sender will not stall until
it completes its transfer.

In traffic models characteristic of data center usage, the off-to-on
switches of contending flows may cluster near one another in time,
leading to incast. We also model the case where senders are “on”
for some amount of time (as opposed to bytes) and seek maximum
throughput, as in the case of videoconferences or similar real-time
traffic.

3.3 Objective function
Resource-allocation theories of congestion control have tradi-

tionally employed the alpha-fairness metric to evaluate allocations
of throughput on shared links [37]. A flow that receives steady-state
throughput of x is assigned a score of Uα (x) = x1−α

1−α
. As α → 1, in

the limit U1(x) becomes logx.
Because Uα (x) is concave for α > 0 and monotonically increas-

ing, an allocation that maximizes the total score will prefer to divide
the throughput of a bottleneck link equally between flows. When
this is impossible, the parameter α sets the tradeoff between fair-
ness and efficiency. For example, α = 0 assigns no value to fairness
and simply measures total throughput. α = 1 is known as propor-
tional fairness, because it will cut one user’s allocation in half as
long as another user’s can be more than doubled. α = 2 corre-
sponds to minimum potential delay fairness, where the score goes
as the negative inverse of throughput; this metric seeks to minimize
the total time of fixed-length file transfers. As α → ∞, maximizing
the total Uα (x) achieves max-min fairness, where all that matters is
the minimum resource allocations in bottom-up order [37].

Because the overall score is simply a sum of monotonically in-
creasing functions of throughput, an algorithm that maximizes this
total is Pareto-efficient for any value of α; i.e., the metric will al-
ways prefer an allocation that helps one user and leaves all other
users the same or better. Tan et al. [28] proved that, subject to the
requirement of Pareto-efficiency, alpha-fairness is the metric that
places the greatest emphasis on fairness for a particular α .

Kelly et al. [25] and further analyses showed that TCP approxi-
mately maximizes minimum potential delay fairness asymptotically
in steady state, if all losses are congestive and link speeds are fixed.

We extend this model to cover dynamic traffic and network con-
ditions. Given a network trace, we calculate the average throughput
x of each flow, defined as the total number of bytes received divided
by the time that the sender was “on.” We calculate the average
round-trip delay y of the connection.

The flow’s score is then

Uα (x)−δ ·Uβ (y), (1)

where α and β express the fairness-vs.-efficiency tradeoffs in
throughput and delay, respectively, and δ expresses the relative im-
portance of delay vs. throughput.

We emphasize that the purpose of the objective function is to sup-
ply a quantitative goal from a protocol-design perspective. It need
not (indeed, does not) precisely represent users’ “true” preferences
or utilities. In real usage, different users may have different ob-
jectives; a videoconference may not benefit from more throughput,
or some packets may be more important than others. We have not
yet addressed the problem of how to accommodate diverse objec-
tives or how endpoints might learn about the differing preferences
of other endpoints.

4. HOW REMY PRODUCES A CONGESTION-
CONTROL ALGORITHM

The above model may be viewed as a cooperative game that end-
points play. Given packets to transmit (offered load) at an endpoint,
the endpoint must decide when to send packets in order to maximize
its own objective function. With a particular congestion-control al-
gorithm running on each endpoint, we can calculate each endpoint’s
expected score.

In the traditional game-theoretic framework, an endpoint’s deci-
sion to send or abstain can be evaluated after fixing the behavior
of all other endpoints. An endpoint makes a “rational” decision to
send if doing so would improve its expected score, compared with
abstaining.

Unfortunately, when greater individual throughput is the desired
objective, on a best-effort packet-switched network like the Inter-
net, it is always advantageous to send a packet. In this setting, if
every endpoint acted rationally in its own self-interest, the resulting
Nash equilibrium would be congestion collapse!1 This answer is
unsatisfactory from a protocol-design perspective, when endpoints
have the freedom to send packets when they choose, but the de-
signer wishes to achieve an efficient and equitable allocation of net-
work capacity.

Instead, we believe the appropriate framework is that of superra-
tionality [20]. Instead of fixing the other endpoints’ actions before
deciding how to maximize one endpoint’s expected score, what is
fixed is the common (but as-yet unknown) algorithm run by all end-
points. As in traditional game theory, the endpoint’s goal remains
maximizing its own self-interest, but with the knowledge that other
endpoints are reasoning the same way and will therefore arrive at
the same algorithm.

Remy’s job is to find what that algorithm should be. We refer
to a particular Remy-designed congestion-control algorithm as a
“RemyCC,” which we then implant into an existing sender as part
of TCP, DCCP [26], congestion manager [5], or another module

1Other researchers have grappled with this problem; for example,
Akella et al. [1] studied a restricted game, in which players are
forced to obey the same particular flavor of TCP, but with the free-
dom to choose their additive-increase and multiplicative-decrease
coefficients. Even with this constraint, the authors found that the
Nash equilibrium is inefficient, unless the endpoints are restricted
to run TCP Reno over a drop-tail buffer, in which case the equilib-
rium is unfair but not inefficient.

126

running congestion control. The receiver is unchanged (as of now;
this may change in the future), but is expected to send periodic ACK
feedback.

Formally, we treat the problem of finding the best RemyCC under
uncertain network conditions as a search for the best policy for a de-
centralized partially-observable Markov decision process, or Dec-
POMDP [34]. This model originated from operations research and
artificial intelligence, in settings where independent agents work
cooperatively to achieve some goal. In the case of end-to-end con-
gestion control, endpoints are connected to a shared network that
evolves in Markovian fashion. At every time step, the agents must
choose between the actions of “sending” or “abstaining,” using ob-
servables from their receiver or from network infrastructure.

4.1 Compactly representing the sender’s state
In principle, for any given network, there is an optimal

congestion-control scheme that maximizes the expected total of the
endpoints’ objective functions. Such an algorithm would relate (1)
the entire history of observations seen thus far (e.g. the contents
and timing of every ACK) and (2) the entire history of packets al-
ready sent, to the best action at any given moment between sending
a new packet or abstaining. However, the search for such an algo-
rithm is likely intractable; on a general Dec-POMDP it is NEXP-
complete [8].

Instead, we approximate the solution by greatly abridging the
sender’s state. A RemyCC tracks just three state variables, which it
updates each time it receives a new acknowledgment:

1. An exponentially-weighted moving average (EWMA) of the
interarrival time between new acknowledgments received
(ack_ewma).

2. An exponentially-weighted moving average of the time be-
tween TCP sender timestamps reflected in those acknowledg-
ments (send_ewma). A weight of 1/8 is given to the new
sample in both EWMAs.

3. The ratio between the most recent RTT and the minimum
RTT seen during the current connection (rtt_ratio).

Together, we call these three variables the RemyCC memory. It is
worth reflecting on these variables, which are the “congestion sig-
nals” used by any RemyCC. We narrowed the memory to this set
after examining and discarding quantities like the most-recent RTT
sample, the smoothed RTT estimate, and the difference between the
long-term EWMA and short-term EWMA of the observed packet
rate or RTT. In our experiments, adding extra state variables didn’t
improve the performance of the resulting protocol, and each ad-
ditional dimension slows down the design procedure considerably.
But we don’t claim that Remy’s three state variables are the only
set that works, or that they are necessarily optimal for all situations
a protocol might encounter. We expect that any group of estimates
that roughly summarizes the recent history could form the basis of
a workable congestion-control scheme.

We note that a RemyCC’s memory does not include the two fac-
tors that traditional TCP congestion-control schemes use: packet
loss and RTT. This omission is intentional: a RemyCC that func-
tions well will see few congestive losses, because its objective func-
tion will discourage building up queues (bloating buffers will de-
crease a flow’s score). Moreover, avoiding packet loss as a conges-
tion signal allows the protocol to robustly handle stochastic (non-
congestive) packet losses without adversely reducing performance.
We avoid giving the sender access to the RTT (as opposed to the
RTT ratio), because we do not want it to learn different behaviors
for different RTTs.

...

TCP 1

TCP 2

TCP n
(n uncertain)

Queue Link
(speed uncertain)

...

TCP Receiver

TCP Receiver

TCP Receiver
Round-trip time (uncertain)

Switching process
(state uncertain)

ON

OFF

ON

Figure 2: Dumbbell network with uncertainty.

At the start of each flow, before any ACKs have been received,
the memory starts in a well-known all-zeroes initial state. Remy-
CCs do not keep state from one “on” period to the next, mimicking
TCP’s behavior in beginning with slow start every time a new con-
nection is established (it is possible that caching congestion state
is a good idea on some paths, but we don’t consider this here). Al-
though RemyCCs do not depend on loss as a congestion signal, they
do inherit the loss-recovery behavior of whatever TCP sender they
are added to.

4.2 RemyCC: Mapping the memory to an action
A RemyCC is defined by how it maps values of the memory to

output actions. Operationally, a RemyCC runs as a sequence of
lookups triggered by incoming ACKs. (The triggering by ACKs
is inspired by TCP’s ACK clocking.) Each time a RemyCC sender
receives an ACK, it updates its memory and then looks up the corre-
sponding action. It is Remy’s job to pre-compute this lookup table
during the design phase, by finding the mapping that maximizes the
expected value of the objective function, with the expectation taken
over the network model.

Currently, a Remy action has three components:

1. A multiple m≥ 0 to the current congestion window (cwnd).

2. An increment b to the congestion window (b could be nega-
tive).

3. A lower bound r > 0 milliseconds on the time between suc-
cessive sends.

If the number of outstanding packets is greater than cwnd, the
sender will transmit segments to close the window, but no faster
than one segment every r milliseconds.

A RemyCC is defined by a set of piecewise-constant rules, each
one mapping a three-dimensional rectangular region of the three-
dimensional memory space to a three-dimensional action:

〈ack_ewma,send_ewma,rtt_ratio〉 → 〈m,b,r〉.

4.3 Remy’s automated design procedure
The design phase of Remy is an optimization procedure to effi-

ciently construct this state-to-action mapping, or rule table. Remy
uses simulation of the senders on various sample networks drawn
from the network model, with parameters drawn within the ranges
of the supplied prior assumptions. These parameters include the
link rates, delays, the number of sources, and the on-off distri-
butions of the sources. Offline, Remy evaluates candidate algo-
rithms on millions of randomly generated network configurations.
Because of the high speed of current computers and the “embar-
rassingly parallel” nature of the task, Remy is able to generate
congestion-control algorithms within a few hours.

A single evaluation step, the innermost loop of Remy’s design
process, consists of drawing 16 or more network specimens from

127

the network model, then simulating the RemyCC algorithm at each
sender for 100 seconds on each network specimen. At the end of the
simulation, the objective function for each sender, given by Equa-
tion 1, is totaled to produce an overall figure of merit for the Re-
myCC. We explore two cases, α = β = 1 and α = 2,δ = 0. The
first case corresponds to proportional throughput and delay fairness,
maximizing

U = log(throughput)−δ · log(delay),

with δ specifying the importance placed on delay vs. throughput.
The second case corresponds to minimizing the potential delay of a
fixed-length transfer, by maximizing

U =− 1
throughput

.

Remy initializes a RemyCC with only a single rule. Any values
of the three state variables (between 0 and 16,384) are mapped to a
default action where m = 1, b = 1, r = 0.01.

Each entry in the rule table has an “epoch.” Remy maintains a
global epoch number, initialized to 0. Remy’s search for the “best”
RemyCC given a network model is a series of greedy steps to build
and improve the rule table:

1. Set all rules to the current epoch.

2. Find the most-used rule in this epoch. Simulate the current
RemyCC and see which rule in the current epoch receives the
most use. If no such rules were used, go to step 4.

3. Improve that action until we can’t anymore. Focus on this
rule and find the best action for it. Draw at least 16 network
specimens from the model, and then evaluate roughly 100
candidate increments to the current action, increasing geo-
metrically in granularity as they get further from the current
value. For example, evaluate r±0.01, r±0.08, r±0.64, . . . ,
taking the Cartesian product with the alternatives for m and
b.
The modified action is evaluated by substituting it into all
senders and repeating the simulation in parallel. We use the
same random seed and the same set of specimen networks in
the simulation of each candidate action to reduce the effects
of random variation.
If any of the candidates is an improvement, replace the ac-
tion with the best new action and repeat the search, still with
the same specimen networks and random seed. Otherwise,
increment the epoch number of the current rule and go back
to step 2.

4. If we run out of rules in this epoch. Increment the global
epoch. If the new epoch is a multiple of a parameter, K, con-
tinue to step 5. Otherwise go back to step 1. We use K = 4
to balance structural improvements vs. honing the existing
structure.

5. Subdivide the most-used rule. Recall that each rule repre-
sents a mapping from a three-dimensional rectangular region
of memory space to a single action. In this step, find the
most-used rule, and the median memory value that triggers
it. Split the rule at this point, producing eight new rules (one
per dimension of the memory-space), each with the same ac-
tion as before. Then return to step 1.

By repeating this procedure, the structure of a RemyCC’s rule ta-
ble becomes an octree [32] of memory regions. Areas of the mem-
ory space more likely to occur receive correspondingly more atten-
tion from the optimizer, and are subdivided into smaller bins that

yield a more granular function relating memory to action. Which
rules are more often triggered depends on every endpoint’s behav-
ior as well as the network’s parameters, so the task of finding the
right structure for the rule table is best run alongside the process of
optimizing existing rules.

To the best of our knowledge, this dynamic partitioning approach
is novel in the context of multi-agent optimization. The “greedy”
approach in step 2 is key to the computational tractability and effi-
ciency of the search because it allows us to prune the search space.
Dividing the memory space into cells of different size proportional
to their activity produces a rule table whose granularity is finer in
regions of higher use. An improvement to consider in the future is
to divide a cell only if the actions at its boundaries markedly dis-
agree.2

5. EVALUATION
We used ns-2 to evaluate the algorithms generated by Remy and

compare them with several other congestion-control methods, in-
cluding both end-to-end schemes and schemes with router assis-
tance. This section describes the network and workload scenarios
and our findings.

5.1 Simulation setup and metrics
Congestion-control protocols. The end-to-end schemes we com-
pared with are NewReno, Vegas, Cubic, and Compound. In addi-
tion, we compared against two schemes that depend on router assis-
tance: XCP, and Cubic over stochastic fair queueing [31] with each
queue running CoDel [33]. We use Nichols’s published sfqCoDel
implementation (version released in March 2013) for ns-2.3 The
Cubic, Compound, and Vegas codes are from the Linux implemen-
tations ported to ns-2 and available in ns-2.35. For the datacenter
simulation, we also compare with the DCTCP ns-2.35 patch.4

RemyCCs. We used Remy to construct three general-purpose
RemyCCs. Each one was designed for an uncertain network model
with the dumbbell topology of Figure 2, but with three different
values of δ (the relative importance of delay): 0.1, 1, and 10. The
parameters of the network and traffic model used at design time
were:

Quantity Design range Distribution
n max senders 1–16 uniform
“on” process mean 5 s exponential
“off” process mean 5 s exponential
link speed 10–20 Mbps uniform
round-trip time 100–200 ms uniform
queue capacity unlimited

The model captures a 64-fold range of bandwidth-delay product
per user. Each RemyCC took about 3–5 CPU-days to optimize.
Calculations were run on Amazon EC2 and on an 80-core and 48-
core server at MIT. In wall-clock time, each RemyCC took a few
hours to be constructed. The RemyCCs contain between 162 and
204 rules each.

We also used Remy to assess how performance varies based on
the specificity of the assumptions used at design time, by building
one RemyCC for a link speed known exactly a priori, and one that
assumes only that the link speed will lie within a tenfold range:

2We thank Leslie Kaelbling for this suggestion.
3http://www.pollere.net/Txtdocs/sfqcodel.cc
4http://www.stanford.edu/~alizade/Site/DCTCP.html

128

http://www.pollere.net/Txtdocs/sfqcodel.cc
http://www.stanford.edu/~alizade/Site/DCTCP.html

0

0.2

0.4

0.6

0.8

1

100 1000 10000 100000 1e+06 1e+07

C
um

ul
at

iv
e

di
st

rib
ut

io
n

Flow length (bytes)

Flow length CDF (Allman 2013; ICSI)
Pareto(x+40) [Xm = 147, alpha = 0.5]

Figure 3: Observed Internet flow length distribution matches
a Pareto (α = 0.5) distribution, suggesting mean is not well-
defined.

Quantity Design range Distribution
n max senders 2 uniform
“on” process mean 5 sec exponential
“off” process mean 5 sec exponential
link speed 15 Mbps (“1×”) exact
link speed 4.7–47 Mbps (“10×”) uniform
round-trip time 150 ms exact
queue capacity unlimited

In most experiments, all the sources run the same protocol; in
some, we pick different protocols for different sources to investi-
gate how well they co-exist. Each simulation run is generally 100
seconds long, with each scenario run at least 128 times to collect
summary statistics.

Workloads. Each source is either “on” or “off” at any point in
time. In the evaluation, we modeled the “off” times as exponen-
tially distributed, and the “on” distribution in one of three different
ways:

• by time, where the source sends as many bytes as the
congestion-control protocol allows, for a duration of time
picked from an exponential distribution,

• by bytes, where the connection sends as many bytes as given
by an exponential distribution of a given average and shape,
and

• by empirical distribution, using the flow-length CDF from
a large trace captured in March 2012 and published re-
cently [4]. The flow-length CDF matches a Pareto distribu-
tion with the parameters given in Figure 3, suggesting that
the underlying distribution does not have finite mean. In our
evaluation, we add 16 kilobytes to each sampled value to en-
sure that the network is loaded.

Topologies. We used these topologies in our experiments:

1. Single bottleneck (“dumbbell”): The situation in Figure 2,
with a 1,000-packet buffer, as might be seen in a shared cable-
modem uplink. We tested a configuration whose link speed
and delay were within the RemyCC design ranges:

Quantity Range Distribution
link speed 15 Mbps exact
round-trip time 150 ms exact
queue capacity 1000 pkts (tail drop)

2. Cellular wireless: We measured the downlink capacity of
the Verizon and AT&T LTE cellular services while mobile,
by carefully saturating the downlink (without causing buffer
overflow) and recording when packets made it to the user de-
vice. We recreate this link within ns-2, queueing packets
until they are released to the receiver at the same time they
were released in the trace. This setup probes the RemyCC’s
resilience to “model mismatch” — in both the Verizon and
AT&T traces, throughput and round-trip time were outside
the limits of the RemyCC design range.

Quantity Range Distribution
link speed varied 0–50 Mbps empirical
round-trip time 50 ms exact
queue capacity 1000 pkts (tail drop)

3. Differing RTTs: Cases where different RemyCCs, contend-
ing for the same link, had different RTTs to their correspond-
ing receiver. We analyzed these cases for throughput and de-
lay fairness and compared with existing congestion-control
schemes.

Quantity Range Distribution
n max senders 4
“on” process 16×103–3.3×109 bytes Fig. 3
“off” process mean 0.2 sec exponential
link speed 10 Mbps exact
queue capacity 1000 pkts (tail drop)

4. Datacenter: We compared a RemyCC against DCTCP in a
simulated datacenter topology.

Quantity Range Distribution
n max senders 64 exact
“on” process mean 20 megabytes exponential
“off” process mean 0.1 sec exponential
link speed 10 Gbps exact
round-trip time 4 ms exact
queue capacity 1000 pkts (tail drop) (for RemyCC)
queue capacity modified RED (for DCTCP)

In addition, we investigate:

5. Competing protocols: We assessed how a RemyCC “played
with” existing congestion-control schemes (Cubic and Com-
pound) when contending for the same bottleneck link.

6. Sensitivity of design range: We investigated how helpful
prior knowledge of the network is to the performance of
Remy’s generated algorithms.

Metrics. We measure the throughput and average queueing delay
observed for each source-destination pair. With an on-off source,
measuring throughput takes some care. We define the through-
put of a pair as follows. Suppose the pair is active during (non-
overlapping) time intervals of length t1, t2, . . . during the entire sim-
ulation run of T seconds. If in each interval the protocol success-
fully receives si bytes, we define the throughput for this connection
as ∑si/∑ ti.

We are interested in the end-to-end delay as well; the reasoning
behind Remy’s objective function and the δ parameter is that proto-
cols that fill up buffers to maximize throughput are not as desirable
as ones that achieve high throughput and low delay — both for their

129

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

12481632

T
hr

ou
gh

pu
t (

M
bp

s)

Queueing delay (ms)

Vegas

Remy
δ=0.1

Remy
δ=1

Remy
δ=10

Cubic

Compound

NewReno

XCP

Cubic/sfqCoDel
Bet

te
r

Figure 4: Results for each of the schemes over a 15 Mbps dumb-
bell topology with n = 8 senders, each alternating between flows
of exponentially-distributed byte length (mean 100 kilobytes)
and exponentially-distributed off time (mean 0.5 s). Medians
and 1-σ ellipses are shown. The blue line represents the effi-
cient frontier, which here is defined entirely by the RemyCCs.

effect on the user, who may prefer to get his packets to the receiver
sooner, as well as any other users who share the same FIFO queue.

We present the results for the different protocols as throughput-
delay plots, where the log-scale x-axis is the queueing delay (aver-
age per-packet delay in excess of minimum RTT). Lower, better, de-
lays are to the right. The y-axis is the throughput. Protocols on the
“top right” are the best on such plots. We take each individual 100-
second run from a simulation as one point, and then compute the
1-σ elliptic contour of the maximum-likelihood 2D Gaussian dis-
tribution that explains the points. To summarize the whole scheme,
we plot the median per-sender throughput and queueing delay as a
circle.

Ellipses that are narrower in the throughput or delay axis corre-
spond to protocols that are fairer and more consistent in allocating
those quantities. Protocols with large ellipses — where identically-
positioned users differ widely in experience based on the luck of
the draw or the timing of their entry to the network — are less fair.
The orientation of an ellipse represents the covariance between the
throughput and delay measured for the protocol; if the throughput
were uncorrelated with the queueing delay (note that we show the
queueing delay, not the RTT), the ellipse’s axes would be parallel
to the graph’s. Because of the variability and correlations between
these quantities in practice, we believe that such throughput-delay
plots are an instructive way to evaluate congestion-control proto-
cols; they provide more information than simply reporting mean
throughput and delay values.

5.2 Single Bottleneck Results
We start by investigating performance over the simple, classic

single-bottleneck “dumbbell” topology. Although it does not model
the richness of real-world network paths, the dumbbell is a valuable
topology to investigate because in practice there are many single-
bottleneck paths experienced by Internet flows.

Recall that this particular dumbbell link had most of its param-
eters found inside the limits of the design range of the RemyCCs
tested. As desired, this test demonstrates that Remy was successful

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1248163264

T
hr

ou
gh

pu
t (

M
bp

s)

Queueing delay (ms)

Vegas

Remy
δ=0.1 Remy

δ=1

Remy
δ=10Cubic

Compound
NewReno

XCP
Cubic/sfqCoDel

Bet
te
r

Figure 5: Results for the dumbbell topology with n = 12
senders, each alternating between flows whose length is drawn
from the ICSI trace (Fig. 3) and exponentially-distributed off
time (mean = 0.2 s). Because of the high variance of the sending
distribution, 1

2 -σ ellipses are down. The RemyCCs again mark
the efficient frontier.

in producing a family of congestion-control algorithms for this type
of network.

Results from the 8-sender and 12-sender cases are shown in Fig-
ures 4 and 5. RemyCCs are shown in light blue; the results demon-
strate the effect of the δ parameter in weighting the cost of delay.
When δ = 0.1, RemyCC senders achieve greater median through-
put than those of any other scheme, and the lowest delay (other
than the two other RemyCCs). As δ increases, the RemyCCs trace
out an achievability frontier of the compromise between throughput
and delay. In this experiment, the computer-generated algorithms
outperformed all the human-designed ones.

From right to left and bottom to top, the end-to-end TCP
congestion-control schemes trace out a path from most delay-
conscious (Vegas) to most throughput-conscious (Cubic), with
NewReno and Compound falling in between.

The schemes that require in-network assistance (XCP and Cubic-
over-sfqCoDel, shown in green) achieve higher throughput than
the TCPs, but less than the two more throughput-conscious Remy-
CCs.5 This result is encouraging, because it suggests that even
a purely end-to-end scheme can outperform well-designed algo-
rithms that involve active router participation. This demonstrates
that distributed congestion-control algorithms that explicitly max-
imize well-chosen objective functions can achieve gains over ex-
isting schemes. As we will see later, however, this substantially
better performance will not hold when the design assumptions of a
RemyCC are contradicted at runtime.

5It may seem surprising that sfqCoDel, compared with DropTail,
increased the median RTT of TCP Cubic. CoDel drops a packet at
the front of the queue if all packets in the past 100 ms experienced a
queueing delay (sojourn time) of at least 5 ms. For this experiment,
the transfer lengths are only 100 kilobytes; with a 500 ms “off”
time, such a persistent queue is less common even though the mean
queueing delay is a lot more than 5 ms. DropTail experiences more
losses, so has lower delays (the maximum queue size is ≈ 4× the
bandwidth-delay product), but also lower throughput than CoDel.
In other experiments with longer transfers, Cubic did experience
lower delays when run over sfqCoDel instead of DropTail.

130

se
qu

en
ce

 n
um

be
r

time

1/2 lin
k speed

lin
k sp

eed

RemyCC starts with
one competing flow,
sending at half of
link speed.

...about one RTT later,
RemyCC begins sending
at full link speed.

Competing flow stops, and...

Figure 6: Sequence plot of a RemyCC flow in contention with
varying cross traffic. The flow responds quickly to the depar-
ture of a competing flow by doubling its sending rate.

In Figures 4 and 5, the RemyCCs do not simply have better me-
dian performance — they are also more fair to individual flows, in
that the performance of an individual sender (indicated by the size
of the ellipses) is more consistent in both throughput and delay.

To explain this result, we investigated how multiple RemyCC
flows share the network. We found that when a new flow starts, the
system converges to an equitable allocation quickly, generally after
little more than one RTT. Figure 6 shows the sequence of transmis-
sions of a new RemyCC flow that begins while sharing the link.
Midway through the flow, the competing traffic departs, allowing
the flow to start consuming the whole bottleneck rate.

5.3 Cellular Wireless Links
Cellular wireless links are tricky for congestion-control algo-

rithms because their link rates vary with time.6

By running a program that attempts to keep a cellular link back-
logged but without causing buffer overflows, we measured the vari-
ation in download speed on Verizon’s and AT&T’s LTE service
while mobile. We then ran simulations over these pre-recorded
traces, with the assumption that packets are enqueued by the net-
work until they can be dequeued and delivered at the same instants
seen in the trace.

As discussed above, we did not design the RemyCCs to accom-
modate such a wide variety of throughputs. Running the algorithm
over this link illustrated some of the limits of a RemyCC’s general-
izability beyond situations encountered during the design phase.

Somewhat to our surprise, for moderate numbers of concurrent
flows, n ≤ 8, the RemyCCs continued to surpass (albeit narrowly)
the best human-designed algorithms, even ones benefiting from in-
network assistance. See Figures 7 and 8.

5.4 Differing RTTs
We investigated how the RemyCCs allocate throughput on a con-

tested bottleneck link when the competing flows have different
RTTs. At the design stage, all contending flows had the same RTT
(which was drawn randomly for each network specimen from be-
tween 100 ms and 200 ms), so the RemyCCs were not designed to
exhibit RTT fairness explicitly.

We compared the RemyCCs with Cubic-over-sfqCoDel by run-
ning 128 realizations of a four-sender simulation where one sender-
receiver pair had RTT of 50 ms, one had 100 ms, one 150 ms, and

6XCP, in particular, depends on knowing the speed of the link ex-
actly; in our tests on cellular traces we supplied XCP with the long-
term average link speed for this value.

1

1.5

2

2.5

3

81632

T
hr

ou
gh

pu
t (

M
bp

s)

Queueing delay (ms)

Vegas

Remy
δ=0.1

Remy
δ=1

Remy
δ=10

Cubic

Compound

NewReno

XCP

Cubic/sfqCoDel

Figure 7: Verizon LTE downlink trace, n = 4. 1-σ ellipses are
shown. The RemyCCs define the efficient frontier. Senders al-
ternated between exponentially-distributed file transfers (mean
100 kilobytes) and exponentially-distributed pause times (mean
0.5 s).

0.8

1

1.2

1.4

1.6

1.8

2

163264

T
hr

ou
gh

pu
t (

M
bp

s)

Queueing delay (ms)

Vegas

Remy
δ=0.1

Remy
δ=1

Remy
δ=10

Cubic

Compound

NewReno

XCP

Cubic/sfqCoDel

Figure 8: Verizon LTE downlink trace, n = 8. 1-σ el-
lipses are shown. As the degree of multiplexing increases,
the schemes move closer together in performance and router-
assisted schemes begin to perform better. Two of the three Re-
myCCs are on the efficient frontier.

131

1

1.2

1.4

1.6

1.8

2

3264128

T
hr

ou
gh

pu
t (

M
bp

s)

Queueing delay (ms)

Vegas

Remy
δ=0.1

Remy
δ=1

Remy
δ=10

Cubic

Compound

NewReno

XCP

Cubic/sfqCoDel

Figure 9: AT&T LTE downlink trace, n = 4. Two of the Remy-
CCs are on the efficient frontier.

0.4

0.5

0.6

0.7

0.8

0.9

1

50 100 150 200

N
or

m
al

iz
ed

 th
ro

ug
hp

u
t s

ha
re

RTT (ms)

Cubic-over-sfqCoDel
RemyCC (δ = 0.1)

RemyCC (δ = 1)
RemyCC (δ = 10)

Figure 10: Remy’s RTT unfairness compares favorably to
Cubic-over-sfqCoDel. Error bar represents standard error of
the mean over 128 100-second simulations.

one 200 ms. The RemyCCs did exhibit RTT unfairness, but more
modestly than Cubic-over-sfqCoDel (Fig. 10).

5.5 Datacenter-like topology
We simulated 64 connections sharing a 10 Gbps datacenter link,

and compared DCTCP [2] (using AQM inside the network) against
a RemyCC with a 1000-packet tail-drop queue. The RTT of the
path in the absence of queueing was 4 ms. Each sender sent 20
megabytes on average (exponentially distributed) with an “off”
time between its connections exponentially distributed with mean
100 milliseconds.

We used Remy to design a congestion-control algorithm to maxi-
mize−1/throughput (minimum potential delay) over these network
parameters, with the degree of multiplexing assumed to have been
drawn uniformly between 1 and 64.

The results for the mean and median throughput (tput) for the 20
megabyte transfers are shown in the following table:

tput: mean, med rtt: mean, med
DCTCP (ECN) 179, 144 Mbps 7.5, 6.4 ms
RemyCC (DropTail) 175, 158 Mbps 34, 39 ms

These results show that a RemyCC trained for the datacenter-
network parameter range achieves comparable throughput at lower
variance than DCTCP, a published and deployed protocol for sim-
ilar scenarios. The per-packet latencies (and loss rates, not shown)
are higher, because in this experiment RemyCC operates over a
DropTail bottleneck router, whereas DCTCP runs over an ECN-
enabled RED gateway that marks packets when the instantaneous
queue exceeds a certain threshold. Developing RemyCC schemes
for networks with ECN and AQM is an area for future work.

5.6 Competing protocols
We investigated the possibility of incremental deployment of a

RemyCC, by simulating a single bottleneck link with one RemyCC
flow contending with one flow from either Compound or Cubic,
with no active queue management. The RemyCC was designed for
round-trip-times between 100 ms and 10 s, in order to accommodate
a “buffer-filling” competitor on the same bottleneck link.

We used the same observed traffic distribution from Figure 3
and varied the mean “off” time (exponentially distributed) of the
senders. The bottleneck link speed was 15 Mbps and baseline RTT
was 150 ms. We also experimented with flows of mean sizes 100
kilobytes and 1 megabyte, with an exponentially distributed mean
“off” time of 0.5 seconds between successive flows.

The results, shown in the two tables below, depended on the
duty cycle of the senders dictated by the mean off time (numbers
in parentheses are standard deviations).

Mean off time RemyCC tput Compound tput
200 ms 2.12 (.11) Mbps 1.79 (.18) Mbps
100 2.18 (.08) 2.75 (.27)
10 2.28 (.10) 3.9 (.13)
Mean size RemyCC tput Cubic tput
100 KBytes 2.04 (.14) 1.31 (.16)
1 MByte 2.09 (.11) 1.28 (.11)

We observe that this RemyCC does well at low duty cycles be-
cause it is able to grab spare bandwidth more quickly. At higher
duty cycles (with low mean off time), Cubic and Compound tend
to grab a higher share of the bandwidth. The results, however, are
close enough that we believe a RemyCC designed for competing
with more aggressive protocols may close the gap, while retaining
high performance when competing only with like-minded Remy-
CCs.

132

-6

-5

-4

-3

-2

-1

0

4.74 15 47.4

lo
g(

n
or

m
a

liz
ed

 th
ro

ug
hp

ut
)

-
lo

g(
d

el
ay

)

link speed (megabits/sec)

Cubic-
over-
sfqCoDel

RemyCC 1x
(link speed
known a priori)

RemyCC 10x
(designed for link speeds
in shaded region)

Figure 11: Performance of two end-to-end RemyCCs that were
designed with different prior information about the network,
compared with Cubic-over-sfqCoDel as the link speed varies.
Despite running only at the sender, the RemyCCs each out-
perform Cubic-over-sfqCoDel over almost their entire design
ranges. But when a RemyCC’s assumptions aren’t met, perfor-
mance deteriorates.

5.7 How helpful is prior knowledge about the network?
We investigated the performance benefit conferred by having

more-specific prior information about the network, and what hap-
pens when that prior information is incorrect.

We used Remy to construct two additional RemyCCs, each for
a network with a known minimum RTT of 150 ms. For one Re-
myCC, the link speed was assumed to be 15 Mbps exactly. A sec-
ond RemyCC was designed to span a 10× range of link speeds,
from 4.7 Mbps to 47 Mbps. We also compared against Cubic-over-
sfqCoDel over this range.

The results are shown in Figure 11. On the particular link for
which the “1×” RemyCC was designed, it performs the best, but its
performance trails off quickly around that value. Within the range
of the “10×” RemyCC, it beats Cubic-over-sfqCoDel, but again
deteriorates when the true network violates its design assumptions.
The results show that more-specific prior knowledge is helpful and
improves performance — when it happens to be correct.

5.8 Summary of results
Using a few CPU-weeks of computation, Remy produced several

computer-generated congestion-control algorithms, which we then
evaluated on a variety of simulated network conditions of varying
similarity to the prior assumptions supplied at design-time.

On networks whose parameters mostly obeyed the prior knowl-
edge supplied at design range — such as the dumbbell network with
the 15 Mbps link — Remy’s end-to-end algorithms outperformed
all of the human-generated congestion-control algorithms, even al-
gorithms that receive help from network infrastructure.

RemyCC (δ = 0.1) achieved > 1.7× gains in median through-
put and > 2.7× reductions in median queueing delay against Cubic
and Compound, generally thought to be excellent general-purpose
congestion-control algorithms. Against Cubic-over-sfqCoDel,
which has the benefit of code running on network infrastructure,
RemyCC achieved a 40% increase in median throughput and a 7.8×
decrease in median queueing delay.

On the cellular link traces, which are variable and were not de-
signed for, Remy’s schemes outperformed the existing congestion-
control algorithms (end-to-end or otherwise) when the maximum
degree of multiplexing was 4 or less, and outperformed the end-to-
end schemes and sfqCoDel when it was 8 or less. However, as the
network conditions grew farther afield from the supplied prior as-
sumptions, Remy’s performance declined, although the algorithms
were still competitive with traditional TCP congestion control on
the networks we examined.

6. DISCUSSION
Much remains unknown about the capabilities and limits of

computer-generated algorithms, much less decentralized algo-
rithms that cooperate indirectly across a network to achieve a com-
mon goal. Although the RemyCCs appear to work well on networks
whose parameters fall within or near the limits of what they were
prepared for — even beating in-network schemes at their own game
and even when the design range spans an order of magnitude vari-
ation in network parameters — we do not yet understand clearly
why they work, other than the observation that they seem to opti-
mize their intended objective well.

We have attempted to make algorithms ourselves that surpass
the generated RemyCCs, without success. That suggests to us that
Remy may have accomplished something substantive. But digging
through the dozens of rules in a RemyCC and figuring out their
purpose and function is a challenging job in reverse-engineering.
RemyCCs designed for broader classes of networks will likely be
even more complex, compounding the problem.

Our approach increases endpoint complexity in order to reduce
the complexity of overall network behavior. Traditional TCP con-
gestion control specifies simpler behavior for each endpoint, but
the resulting emergent behavior of a multiuser network is not easily
specified and is often suboptimal and variable, and even unstable.

By contrast, our approach focuses on maximizing a well-
specified overall objective at the cost of complex endpoint algo-
rithms. We think this tradeoff is advisable: today’s endpoints can
execute complex algorithms almost as easily as simple ones (and
with Remy, the bulk of the intelligence is computed offline). What
users and system designers ultimately care about, we believe, is the
quality and consistency of overall behavior.

Our synthesis-by-simulation approach also makes it easier to dis-
cuss competing proposals for congestion control. Today, it is not
easy to say why one flavor of TCP or tweak may be preferred over
another. But if two computer-generated algorithms differ, there is a
reason: either they make different assumptions about the expected
networks they will encounter, or they have different goals in mind,
or one is better optimized than the other. This formulation allows
the implementer to choose rationally among competing options.

All that said, we have much to learn before computer-generated
algorithms will have proven themselves trustworthy:

• Other than by exhaustive testing, we don’t know how to pre-
dict the robustness of RemyCCs to unexpected inputs. Do
they break catastrophically in such situations?

• How would a RemyCC designed for a 10,000-fold range of
throughputs and RTTs perform?

• Although we are somewhat robust against a RemyCC’s latch-
ing on to the peculiarities of a simulator implementation (be-
cause RemyCCs are designed within Remy but then evalu-
ated within ns-2), we can’t be certain how well RemyCCs
will perform on real networks without trying them.

133

We believe that making congestion control a function of the de-
sired ends, and the assumptions we make about the network, is the
solution to allow the Internet and its subnetworks to evolve without
tiptoeing around TCP’s assumptions about how networks behave.
But many dots need to be connected before the the Internet at large
— as opposed to internal networks — might agree on a model that
could be used to prepare a “one-size-fits-all” RemyCC.

7. CONCLUSION
This paper asks whether the design of distributed congestion-

control algorithms for heterogeneous and dynamic networks can be
done by specifying the assumptions that such algorithms are enti-
tled to have and the policy they ought to achieve, and letting com-
puters work out the details of the per-endpoint mechanisms.

Much future work remains before this question can be answered
for the real-world Internet, but our findings suggest that this ap-
proach has considerable potential.

We developed and evaluated Remy, a program that designs end-
to-end congestion-control algorithms to human-supplied specifica-
tions. Remy’s outputs handily outperform the best-known tech-
niques, including ones that require intrusive in-network changes, in
scenarios where network parameters varied over one or two orders
of magnitude.

Our results, and many others in the literature, indicate that there
is no existing single congestion-control method that is the best
in all situations. Moreover, the set of “all situations” is rapidly
growing as new subnetworks and link technologies proliferate. A
computer-generated approach that maximizes an explicit function
of the throughput and delay to generate algorithms may be the right
way forward for the networking community. Today’s informal ap-
proach of hampering lower layers or providing vague advice on how
best to accommodate TCP should be replaced by end-to-end algo-
rithms (in TCP and elsewhere) that adapt to whatever the lower
layers are doing. Remy provides a way to achieve this goal.

8. ACKNOWLEDGMENTS
We are grateful to Anirudh Sivaraman for several contributions

to the simulator and for helpful discussions. We thank Leslie Kael-
bling, Christopher Amato, Scott Shenker, and our shepherd, Ranjita
Bhagwan. We thank Frans Kaashoek and Nickolai Zeldovich for
the use of multicore machines at MIT. KW was supported by the
Claude E. Shannon Research Assistantship. We thank the mem-
bers of the MIT Center for Wireless Networks and Mobile Com-
puting (Wireless@MIT), including Amazon.com, Cisco, Google,
Intel, Mediatek, Microsoft, ST Microelectronics, and Telefonica,
for their support. This work was also supported in part by NSF
grant CNS-1040072.

REFERENCES
[1] A. Akella, S. Seshan, R. Karp, S. Shenker, and C. Papadimitriou. Selfish

Behavior and Stability of the Internet: A Game-Theoretic Analysis of TCP. In
SIGCOMM, 2002.

[2] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prabhakar,
S. Sengupta, and M. Sridharan. Data Center TCP (DCTCP). In SIGCOMM,
2010.

[3] M. Allman. Initial Congestion Window Specification.
http://tools.ietf.org/html/draft-allman-tcpm-bump-initcwnd-00, 2010.

[4] M. Allman. Comments on Bufferbloat. ACM SIGCOMM Computer
Communication Review, 43(1), Jan. 2013.

[5] H. Balakrishnan, H. S. Rahul, and S. Seshan. An Integrated Congestion
Management Architecture for Internet Hosts. In SIGCOMM, 1999.

[6] D. Bansal and H. Balakrishnan. Binomial Congestion Control Algorithms. In
INFOCOM, 2001.

[7] D. Bansal, H. Balakrishnan, S. Floyd, and S. Shenker. Dynamic Behavior of
Slowly-Responsive Congestion Control Algorithms. In SIGCOMM, 2001.

[8] D. S. Bernstein, R. Givan, N. Immerman, and S. Zilberstein. The Complexity of
Decentralized Control of Markov Decision Processes. Mathematics of
Operations Research, 27(4):819–840, Nov. 2002.

[9] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson. TCP Vegas: New
Techniques for Congestion Detection and Avoidance. In SIGCOMM, 1994.

[10] D.-M. Chiu and R. Jain. Analysis of the Increase and Decrease Algorithms for
Congestion Avoidance in Computer Networks. Computer Networks and ISDN
Systems, 17:1–14, 1989.

[11] J. Chu, N. Dukkipati, Y. Cheng, and M. Mathis. Increasing TCP’s Initial
Window. http://tools.ietf.org/html/draft-ietf-tcpm-initcwnd-08, 2013.

[12] D. Clark. The Design Philosophy of the DARPA Internet Protocols. In
SIGCOMM, 1988.

[13] N. Dukkipati, T. Refice, Y. Cheng, J. Chu, T. Herbert, A. Agarwal, A. Jain, and
N. Sutin. An Argument for Increasing TCP’s Initial Congestion Window. ACM
SIGCOMM Computer Communication Review, 40(3):27–33, 2010.

[14] W. Feng, K. Shin, D. Kandlur, and D. Saha. The BLUE Active Queue
Management Algorithms. IEEE/ACM Trans. on Networking, Aug. 2002.

[15] S. Floyd. TCP and Explicit Congestion Notification. CCR, 24(5), Oct. 1994.
[16] S. Floyd, M. Handley, J. Padhye, and J. Widmer. Equation-Based Congestion

Control for Unicast Applications. In SIGCOMM, 2000.
[17] S. Floyd and V. Jacobson. Random Early Detection Gateways for Congestion

Avoidance. IEEE/ACM Trans. on Networking, 1(4), Aug. 1993.
[18] S. Ha, I. Rhee, and L. Xu. CUBIC: A New TCP-Friendly High-Speed TCP

Variant. ACM SIGOPS Operating System Review, 42(5):64–74, July 2008.
[19] J. C. Hoe. Improving the Start-up Behavior of a Congestion Control Scheme for

TCP. In SIGCOMM, 1996.
[20] D. Hofstadter. Metamagical Themas: Questing for the Essence of Mind and

Pattern. Basic books, 1985.
[21] V. Jacobson. Congestion Avoidance and Control. In SIGCOMM, 1988.
[22] R. Jain. A Delay-based Approach for Congestion Avoidance in Interconnected

Heterogeneous Computer Networks. In SIGCOMM, 1989.
[23] P. Karn, C. Bormann, G. Fairhurst, D. Grossman, R. Ludwig, J. Mahdavi,

G. Montenegro, J. Touch, and L. Wood. Advice for Internet Subnetwork
Designers, 2004. RFC 3819, IETF.

[24] D. Katabi, M. Handley, and C. Rohrs. Congestion Control for High
Bandwidth-Delay Product Networks. In SIGCOMM, 2002.

[25] F. P. Kelly, A. Maulloo, and D. Tan. Rate Control in Communication Networks:
Shadow Prices, Proportional Fairness and Stability. Journal of the Operational
Research Society, 49:237–252, 1998.

[26] E. Kohler, M. Handley, and S. Floyd. Designing DCCP: Congestion control
Without Reliability. In SIGCOMM, 2006.

[27] S. Kunniyur and R. Srikant. Analysis and Design of an Adaptive Virtual Queue
(AVQ) Algorithm for Active Queue Management. In SIGCOMM, 2001.

[28] T. Lan, D. Kao, M. Chiang, and A. Sabharwal. An Axiomatic Theory of
Fairness. In INFOCOM, 2010.

[29] D. Leith and R. Shorten. H-TCP Protocol for High-Speed Long Distance
Networks. In PFLDNet, 2004.

[30] S. Mascolo, C. Casetti, M. Gerla, M. Sanadidi, and R. Wang. TCP Westwood:
Bandwidth Estimation for Enhanced Transport over Wireless Links. In
MobiCom, 2001.

[31] P. E. McKenney. Stochastic Fairness Queueing. In INFOCOM, 1990.
[32] D. Meagher. Geometric Modeling Using Octree Encoding. Computer Graphics

and Image Processing, 19(2):129–147, 1982.
[33] K. Nichols and V. Jacobson. Controlling Queue Delay. ACM Queue, 10(5),

May 2012.
[34] F. A. Oliehoek. Decentralized POMDPs. In In Reinforcement Learning: State

of the Art, Adaptation, Learning, and Optimization, pages 471–503, 2012.
[35] R. Pan, B. Prabhakar, and K. Psounis. CHOKe—A Stateless Active Queue

Management Scheme for Approximating Fair Bandwidth Allocation. In
INFOCOM, 2000.

[36] K. K. Ramakrishnan and R. Jain. A Binary Feedback Scheme for Congestion
Avoidance in Computer Networks. ACM Trans. on Comp. Sys., 8(2):158–181,
May 1990.

[37] R. Srikant. The Mathematics of Internet Congestion Control. Birkhauser, 2004.
[38] C. Tai, J. Zhu, and N. Dukkipati. Making Large Scale Deployment of RCP

Practical for Real Networks. In INFOCOM, 2008.
[39] K. Tan, J. Song, Q. Zhang, and M. Sridharan. A Compound TCP Approach for

High-speed and Long Distance Networks. In INFOCOM, 2006.
[40] J. Touch. Automating the Initial Window in TCP.

http://tools.ietf.org/html/draft-touch-tcpm-automatic-iw-03, 2012.
[41] Z. Wang and J. Crowcroft. A New Congestion Control Scheme: Slow Start and

Search (Tri-S). In SIGCOMM, 1991.
[42] D. Wei, C. Jin, S. Low, and S. Hegde. FAST TCP: Motivation, Architecture,

Algorithms, Performance. IEEE/ACM Trans. on Networking, 14(6):1246–1259,
2006.

[43] K. Winstein and H. Balakrishnan. End-to-End Transmission Control by
Modeling Uncertainty about the Network State . In HotNets-X, 2011.

[44] Y. Xia, L. Subramanian, I. Stoica, and S. Kalyanaraman. One More Bit is
Enough. IEEE/ACM Trans. on Networking, 16(6):1281–1294, 2008.

[45] L. Xu, K. Harfoush, and I. Rhee. Binary Increase Congestion Control (BIC) for
Fast Long-Distance Networks. In INFOCOM, 2004.

[46] Y. Yi and M. Chiang. Stochastic Network Utility Maximisation. European
Transactions on Telecommunications, 19(4):421–442, 2008.

134

http://tools.ietf.org/html/draft-allman-tcpm-bump-initcwnd-00
http://tools.ietf.org/html/draft-ietf-tcpm-initcwnd-08
http://tools.ietf.org/html/draft-touch-tcpm-automatic-iw-03

	Introduction
	Related Work
	Modeling the Congestion-Control Problem
	Expressing prior assumptions about the network
	Traffic model
	Objective function

	How Remy Produces a Congestion-Control Algorithm
	Compactly representing the sender's state
	RemyCC: Mapping the memory to an action
	Remy's automated design procedure

	Evaluation
	Simulation setup and metrics
	Single Bottleneck Results
	Cellular Wireless Links
	Differing RTTs
	Datacenter-like topology
	Competing protocols
	How helpful is prior knowledge about the network?
	Summary of results

	Discussion
	Conclusion
	Acknowledgments

