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Current technology trends make it poss]ble to build communication networks that can support

high-performance distributed computing. This paper describes issues in the design of a prototype

switch for an arbitrary topology point-to-point network with link speeds of up to 1 Gbit/s.

The switch deals in fixed-length ATM-style cells, which it can process at a rate of 37 million cells

per second. It provides high bandwidth and low latency for datagram traffic. In addition, it

supports real-time traffic by providing bandwidth reservations with guaranteed latency bounds.

The key to the switch’s operation is a technique called parallel iteratzue matching, which can

quickly identify a set of conflict-free cells for transmission in a time slot. Bandwidth reservations

are accommodated in the switch by building a fixed schedule for transporting cells from reserved

flows across the switch; parallel iterative matching can fill unused slots with datagram traffic.

Finally, we note that parallel Iterative matching may not allocate bandwidth fairly among flows

of datagram traffic. We describe a technique called statzsttcat match mg, which can be used to

ensure fairness at the switch and to support applications with rapidly changing needs for

guaranteed bandwidth.
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1. INTRODUCTION

Over the past few years, several technology trends have converged to provide

an opportunity for high-performance distributed computing. Advances in
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laser and fiber-optic technology have driven feasible link throughputs above a

gigabit per second. Dynamic RAM chips have become cheap enough to be

cost-effective at providing the large amounts of buffering needed at these

very high link speeds. Moreover, quick routing and switching decisions are

possible with current CMOS technology.

In combination, these trends make it possible to construct a practical

local-area network using multiple switches and gigabit-per-second point-to-

point fiber links configured in an arbitrary topology. This kind of network has

several advantages [Schroeder et al. 1991]. In contrast to networks like

Ethernet [Metcalfe and Boggs 1976] that use a broadcast physical medium or

networks like FDDI [ANSI 1987, 1988] based on a token ring, arbitrary

topology point-to-point networks offer (1) aggregate network bandwidth that

can be much larger than the throughput of a single link; (2) the ability to add

throughput incrementally by adding extra switches and links to match

work-load requirements; (3) the potential for achieving lower latency, both by

shortening path lengths and by eliminating the need to acquire control over

the entire network before transmitting; and (4) a more flexible approach to

high availability using multiple redundant paths between hosts. This paper

studies the architectural issues in building high-performance switches for

arbitrary topology local-area networks.

High-performance networks have the potential to change the nature of

distributed computing. Low-latency and high-throughout communication

allow a much closer coupling of distributed systems than has been feasible in

the past: With previous generation networks, the high cost of sending mes-

sages led programmers to minimize the amount of network communication

carefully [Schroeder and Burrows 1990]. Furthermore, when combined with

today’s faster processors, faster networks can enable a new set of applica-

tions, such as desktop multimedia and the use of a network of workstations

as a supercomputer.

A primary barrier to building high-performance networks is the difficulty

of high-speed switching, that is, of taking data arriving on an input link of

a switch and quickly sending the data out on the appropriate output link.

The switching task is simplified if the data can be processed in fixed-length

cells, as discussed in Section 2.3. Given fixed-length cells, switching involves

at least two separate tasks:

(1) scheduling—choosing which cell to send during each time slot, when
more than one cell is destined for the same output; and

(2) data forwarding—delivering the cell to the output once it has been
scheduled.

Many high-speed switch architectures use the same hardware for

both scheduling and data forwarding; Starlite [Huang and Knauer 1984],

Knockout [Yeh et al. 1987], and Sunshine [Giacopelli et al. 1991] are just a

few of the switches that take this approach. If the input and output links of

a switch are connected internally by a multistage interconnection network,
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the internal network can detect and resolve conflicts between cells as they

work their way through the switch.

We take a different approach. We argue that for high-speed switching, both

now and in the future, switch scheduling can profitably be separated from

data forwarding. By doing this, the hardware for each function can be

specialized to the task. Because switch cost is dominated by the optical

components needed to drive the fiber links, the added cost of separate

hardware to do scheduling is justified, particularly if link utilization is

improved as a result.

We observe that switch scheduling is simply an application of bipartite

graph matching: Each output must be paired with at most one input that has

a cell destined for that output. [Unfortunately, existing algorithms for bipar-

tite matching are either too slow to be used in a high-speed switch or do not

maximally schedule the switch, sacrificing throughput.

A primary contribution of this paper is a randomized parallel algorithm,

called parallel iterative matching, for finding a maximal bipartite match at

high speed. (In practice, we run the algorithm for a fixed short time; in most

cases it finds a maximal match.) Parallel iterative matching can be efficiently

implemented in hardware for switches of moderate scale. Our work is moti-

vated by the needs of AN2, an arbitrary topology network under development

at Digital’s Systems Research C,enter; we expect to begin using the network

in mid-1993. Using only off-the-shelf field-programmable gate array technol-

ogy [Xilinx 1991], the AN2 switch using parallel iterative matching will be

able to schedule a standard 53-byte ATM cell out each link of a 16-by-16

crossbar switch in the time for one cell to arrive at a link speed of 1 Gbit\s.

This requires scheduling over 37 million cells per second. Cell latency across

the switch is about 2.2 KS in the absence of contention. The switch does not

drop cells and preserves the order of cells sent between a pair of hosts. If

implemented in custom CMOS, we expect our algorithm to scale to larger

switches and faster links.

Supporting the demands of new distributed applications requires more

from a network than simply high throughput or low latency. The ability to

provide guaranteed throughput and bounded latency is crucial to multimedia

applications [Ferrari and Verma 1990]. Even for applications that do not need

guarantees, predictable and fair performance is often important to higher

layers of protocol software [Jain 1990; Zhang 1991].

Parallel iterative matching does not by itself provide either fairness or

guaranteed throughput. We present enhancements to our algorithm to pro-

vide these features. These enhancements pull from the bag of tricks of

network and distributed system design: Local decisions are more efficient if

they can be made independently of global information; purely static schedul-

ing can simplify performance analysis; and finally, randomness can desyn-

chronize decisions made by a large number of agents.

The remainder of the paper discusses these issues in more detail. Section 2
puts our work in context by describing related work. Section 3 presents the

basic parallel scheduling algorithm. Section 4 explains how we provide guar-

anteed bandwidth and latency using the AN2 switch. Section 5 describes a
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technique called statistical matching, which uses additional randomness in

the switching algorithm to support dynamic allocation of bandwidth. Section

6 provides a summary of our work.

2. BACKGROUND AND RELATED WORK

Our goal is to build a local-area network that supports high-performance

distributed computing; for this, a network must have high throughput, low

latency, graceful degradation under heavy work loads, the ability to provide

guaranteed performance to real-time applications, and performance that is

both fair and predictable. The network should be capable of connecting

anywhere from tens to thousands of workstations.

The network we envision consists of a collection of switches, links, and host

network controllers. Data are injected into the network by the controller in a

sending host; after traversing a sequence of links and switches, the data are

delivered to the controller at the receiving host. Each link is point-to-point,

connecting a single switch port to either a controller or to the port of another

switch. Switches can be connected to each other and to controllers in any

topology.

Routing in the network is based on flows, where a flow is a stream of cells

between a pair of hosts. (Our network also supports multicast flows, but we

will not discuss that here. ) There may be multiple flows between a given pair

of hosts, for example, with different performance guarantees. Each cell is

tagged with an identifier for its flow. A routing table in each switch, built

during network configuration, determines the output port for each flow. All

cells from a flow take the same path through the network.

This paper focuses on the algorithms to be used for switch scheduling. But

we must first provide context for our work by discussing other aspects of the

AN2 switch design, including switch size, the configuration of the switch’s

internal interconnect, fixed-length cells versus variable-length packets, and

buffer organization.

2.1 Swkch Size

A key parameter in designing a point-to-point network is the size of each

switch. Part of the host-to-host interconnect is provided by the fiber-optic

links between switches and part by the si~icon implementing the internal

interconnect within each switch. In designing a network, we need to find an

appropriate balance between using a large number of small switches or a

small number of large switches.

At one extreme, very small switches are not cost-effective. The largest
component in the cost of a local-area fiber-optic network comes from the

optoelectronic devices in each switch that drive the fiber links. These devices

account for almost half the cost of the 16-by-16 AN2 switch; we discuss the

component costs of the AN2 switch in more detail in Section 3.3. A smaller

switch size requires the network to have a larger number of fiber connections

and, thus, a larger number of optoelectronic devices.

On the other hand, very large switches are often inappropriate for local-area

networks. Although it is feasible to build switches with thousands of ports,
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such a switch would be unduly costly for sites that have only dozens of

workstations. Smaller switches allow capacity to be added incrementally at

low cost; smaller switches can also lower the cost of availability by making it

less expensive for the network to have fully redundant paths.

For these reasons, our algorithms are designed for switches of moderate

scale, in the range of 16-by-16 to 64-by-64. We expect that it will be some

time before workstations are able to use a full gigabit-per-second link; for

~2, we are designing a special concentrator card to connect four worksta-

tions, each using slower speed link, to a single AN2 switch port. A single

16-by-16 AN2 switch can thus connect up to 64 workstations.

2.2 Internal Interconnect

Once the switch size has been decided, there are several approaches to

designing the internal data path needed to transport cells from the inputs

to the outputs of the switch. Probably the simplest approach to transporting

data across a switch is to use shared memory or a shared bus. We do not

pursue these techniques here, because they do not seem feasible for even

moderate-sized switches with gigabit-per-second links, much less for the

faster link speeds of the future.

Another uncomplicated approach is to connect inputs to outputs via a

crossbar, using some external logic to control the crossbar, that is, to decide

which cells are forwarded over the crossbar during each time slot and to set

up the crossbar for those cells. In the absence of a fast algorithm, however,

scheduling the crossbar quickly becomes a performance bottleneck for all but

the smallest switches.

Many switch architectures call for the switch’s internal interconnection to

be self-routing [Ahmadi and Denzel 1989]. The switch is organized internally

as a multistage network of smaller switches arranged in a butterfly, or more

generally, in a banyan [Patel 1979]. Cells placed into a banyan network are

automatically routed and delivered to the correct output based solely on the

information in the cell header.

Unlike a crossbar, however, banyan networks suffer from internal block-

ing. A cell destined for one outlput can be delayed (or even dropped) because

of contention at the internal switches with cells destined for other outputs.

This makes it difficult to provicle guaranteed performance.

Internal blocking can be avoided by observing that banyan networks are

internally nonblocking if cells are sorted according to output destination and

then shuffled before being placed into the network [Huang and Knauer 1984].

Thus, a common switch design is to put a Batcher sorting network [Batcher

1968] and a shuffle exchange network in front of a normal banyan network.

As with a crossbar, a cell maybe sent from any input to any output, provided

no two cells are destined for the same output.

Our scheduling algorithm assumes that data can be forwarded through the
switch with no internal blocking; this can be implemented using either a

crossbar or a Batcher–banyan network. Our prototype uses a crossbar because

it is simpler and has lower latency. Even though the hardware for a crossbar
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for an N-by-N switch grows as O(N ~), for moderate scale switches the cost of

a crossbar is small relative to the rest of cost of the switch. In the AN2

prototype switch, for example, the crossbar accounts for less than 5 percent of

the overall cost of the switch.

2.3 Fixed-Length Cells versus Variable-Length Packets

Within our network, data are transmitted in fixed-length cells rather than

variable-length packets. We support standard 53-byte ATM cells with 5-byte

cell headers, although a 128-byte cell size with 8-byte cell headers would have

simplified our implementation. Applications may still deal in variable-length

packets. It is the responsibility of the network controller at the sending host

to divide packets into cells, each containing the flow identifier for routing; the

receiving controller reassembles the cells into packets.

The use of fixed-length cells has a number of advantages for switch design,

despite the disadvantages that the switch must make more frequent schedul-

ing decisions and that a greater proportion of the link bandwidth is consumed

by the overhead of cell headers and internal fragmentation. The chief gain of

using cells is that performance guarantees are easier to provide when the

entire crossbar is reconfigured after every cell time slot. In addition, fixed-

length cells simplify random-access buffer management (discussed in the

next subsection). Using cells can also improve packet latency for both short

and long packets. Short packets do better because they can be interleaved

over a link with long packets; a long packet cannot monopolize a connection

for its entire duration. For long packets, cells simulate the performance

of cut-through [Kermani and Kleinrock 1979], while permitting a simpler

store-and-forward implementation.

2.4 Buffer Organization

Even with an internally nonblocking switch, when several cells destined for

the same output arrive in a time slot, at most one can actually leave the

switch; the others must be buffered. There are many options for organizing

the buffer pools. For example, buffers may be placed at the switch inputs or

outputs; when placed at the inputs, they may be strictly FIFO or allow

random access. There has been considerable research on the impact of these

alternatives. In this subsection, we review the work that is most relevant to

our switch design.

The simplest approach is to maintain a FIFO queue of cells at each input;

only the first cell in the queue is eligible for being transmitted during the

next time slot. The difficulty with FIFO queuing is that, when the cell at
the head of an input queue is blocked, all cells behind it in the queue are

prevented from being transmitted, even when the output link they need is

idle. This is called head-of-line ( HOL) blocking. Karol et al. [1987] have

shown that head-of-line blocking limits switch throughput to 58 percent of

each link, when the destinations of incoming cells are uniformly distributed

among all outputs.

Unfortunately, FIFO queuing can have even worse performance under

certain traffic patterns. For example, if several input ports each receive a
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Fig. 1. perfOI_marlCe degradation due to FIFO queuing.

burst of cells for the same output, cells that arrive later for other outputs will

be delayed while the burst cells are forwarded sequentially through the

bottleneck link. If incoming traffic is periodic, Li [1988] showed that

the aggregate switch throughput can be as small as the throughput of a

single link, even for very large switches; this is called stationary blocking.

Figure 1 illustrates this effect.1 The worst case in Figure 1 occurs when

scheduling priority rotates among inputs so that the first cell from each input

is scheduled in turn. The example assumes for simplicity that cells can be

sent out the same link they came in on; even if this is not the case, aggregate

switch throughput can still be limited to twice the throughput of a single link.

Note that without the restricticm of FIFO queuing—that is, if any queued cell

is eligible for forwarding—all of the switch’s links could be fully utilized in

steady state.

Various approaches have been proposed for avoiding the performance

problems of FIFO input buffers. One is to expand the internal switch band-

width so that it can transmit k cells to an output in a single time slot.

This can be done by replicating the crossbar or, more typically, in a Batcher-

banyan switch by replicating the banyan part of the switch k times [Huang

and Knauer 1984]. Since only one cell can depart from an output during each

slot, buffers are required at the outputs with this technique. In the limit, with

enough internal bandwidth in an N-by-iV switch to transmit N cells to the

same output, there is no need for input buffers, since any pattern of arriving

cells can be transmitted to the outputs. We refer to this as perfect output

queuing.

Perfect output queuing yields the best performance possible in a switch,

because cells are only delayed due to contention for limited output link

bandwidth, never due to contention internal to the switch. Unfortunately, the

hardware cost of perfect output queuing is prohibitive for all but the smallest

switches; the internal interccmnect plus the buffers at each output must

1 In this and other figures in this paper, input ports on the left and output ports on the right are

shown as dmtmct entities. However, in an AN2 switch, the z th input and the Lth output actually

connect to the same full-duplex fiber-optic link. The small boxes represent cells queued at each

input; the number in each box corresponds to the output destination of that cell.
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accommodate N times the link bandwidth. Thus, it is more common for

switches to be built with some small k chosen as the replication factor. If

more than k cells arrive during a slot for a given output, not all of them can

be forwarded immediately. Typically, the excess cells are simply dropped.

While studies have shown that few cells are dropped with a uniform work

load [Giacopelli et al, 1991], unfortunately, local-area network traffic is rarely

uniform. Instead, a common pattern is client–server communication, where a

large fraction of incoming cells tend to be destined for the same output port,

as described by Owicki and Karlin [1992]. Unlike previous generation net-

works, fiber links have very low error rates; the links we are using in AN2,

for example, have a bit error rate of less than 10- lZ. Thus, loss induced by

the switch architecture will be more noticeable.

Another technique, often combined with the previous one [Giacopelli et al.

1991], is to shunt blocked cells into a recirculating queue that feeds back into

extra ports in the Batcher–banyan network. The recirculated cells are then

sorted, along with incoming cells, during the next time slot. Once again, if

there is too much contention for outputs, some cells will be dropped.

Our switch takes the alternative approach of using random-access input

buffers. Cells that cannot be forwarded in a slot are retained at the input, and

the first cell of any queued flow can be selected for transmission across the

switch. This avoids the cell-loss problem in the schemes above, but

requires a more sophisticated algorithm for scheduling the cells to be

transmitted in a slot.

Although there have been several proposals for switches that use random-

access input buffers [Karol et al. 1987; Tamir and Frazier 1988; Obara and

Yasushi 1989; Karol et al. 1992], the difficulty is in devising an algorithm

that is both fast enough to schedule cells at high link speeds and effective

enough to deliver high link throughput. For example, Hui and Arthurs [1987]

use the Batcher network to schedule the Batcher–banyan. At first, only the

header for the first queued cell at each input port is sent through the Batcher

network; an acknowledgment is returned indicating whether the cell is

blocked or can be forwarded during this time slot. Karol et al. [1987] suggest

that iteration can be used to increase switch throughput. In this approach, an

input that loses the first round of the competition sends the header for the

second cell in its queue on the second round, and so on. After some number of

iterations k, the winning cells, header plus data, are sent through the

Batcher-banyan to the outputs. Note that this reduces the impact of head-of-

Iine blocking, but does not eliminate it, since only the first k cells in each
queue are eligible for transmission.

3. PARALLEL ITERATIVE MATCHING

In this section we describe our algorithm for switch scheduling, first giving

an overview and then discussing its execution time and hardware cost. The

section concludes with simulations of its performance relative to FIFO and

output queuing.
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3.1 Overview

The goal of our scheduling algorithm is to find a conflict-free pairing of inputs

to outputs quickly, considering only those pairs with a queued cell to trans-

mit between them. This pairing determines which inputs transmit cells over

the crossbar to which outputs in a given time slot. With random-access

buffers, an input may transmit to any one of the outputs for which it has a

queued cell, but the constraint is that each input can be matched to at most

one output and each output to at most one input.

Our algorithm, parallel iteratzue matching, uses parallelism, randomness,

and iteration to accomplish this goal efficiently. We iterate the following

three steps (initially, all inputs and outputs are unmatched):

(1) Each unmatched input sends a request to every output for which it has a
buffered cell. This notifies an output of all its potential partners.

(2) If an unmatched output receives any requests, it chooses one randomly to

grant. The output notifies each input whether its request was granted.

(3) If an input receives any grants, it chooses one to accept and notifies that
output .

Each of these steps occurs independently and in parallel at each input/ output

port; there is no centralized scheduler. Yet, at the end of one iteration of the

protocol, we have a legal matching of inputs to outputs. More than one input

can request the same output; the grant phase chooses among them, ensuring

that each output is paired with at most one input. More than one output can

grant to the same input (if the input made more than one request); the accept

phase chooses among them, ensuring that each input is paired with at most

one output.

Although we have a legal matching after one iteration, there may remain

unmatched inputs with queued cells for unmatched outputs. An output whose

grant is not accepted may be able to be paired with an input, none of

whose requests were granted. To address this, we repeat the request, grant,

and accept protocol, retaining the matches made in previous iterations. We

iterate to “fIll in the gaps” in the match left by previous iterations. However,

there can be no head-of-line blocking in our approach, since we consider all

potential connections at each iteration.

Figure 2 illustrates one iteration of parallel iterative matching. Five

requests are made, three are granted, and two are accepted. Furthermore, at

the end of the first iteration, one request (from the bottom input to output 4)

remains from an unmatched input to an unmatched output. This request is

made, granted, and accepted during the second iteration; at this point, no

further pairings can be added.

After a fixed number of iterations (discussed below), we use the result of

parallel iterative matching to set up the crossbar for the next time slot. We

then transmit cells over the crossbar and rerun parallel iterative matching

from scratch for the following time slot. Any remaining flows with queued
cells can be considered for makching, as can any flows that have had cells

arrive at the switch in the meantime.
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EM12

request grant accept

Fig. 2, Parallel iterative matchmg: One Iteration

Parallel iterative matching may forward cells through the switch in an

order different from the order in which they arrived, However, the switch

maintains a FIFO queue for each flow, so cells within a flow are not

reordered. Only the first queued cell in each flow is eligible to be transmitted

over the crossbar. This use of FIFO queuing does not lead to head-of-line

blocking, however: Since all cells from a flow are routed to the same output,

either none of the cells of a flow are blocked or all are.

Our algorithm can be generalized to handle switches with replicated

switching fabrics. For instance, consider a Batcher–banyan switch with k

copies of the banyan network. With such a switch, up to k cells can be

delivered to a single output during one time slot. (Note that this requires

buffers at the outputs, since only one cell per slot can leave the output.) In

this case, we can modify parallel iterative matching to allow each output to

make up to k grants in step (2). In all other ways, the algorithm remains the

same. An analogous change can be made for switch fabrics that allow inputs

to forward more than one cell during any time slot. For the remainder of the

paper, however, we assume that each input must be paired with at most one

output, and vice versa.

3.2 Number of Iterations

A key performance question is the number of iterations that it takes parallel

iterative matching to complete, that is, to reach a point where no unmatched

input has cells queued for any unmatched output. In the worst case, this can

take N iterations for an iV-by-N switch: If all outputs grant to the same

input, only one of the grants ca be accepted on each round. If this pattern

were repeated, parallel iterative matching would be no faster than a sequen-

tial matching algorithm. On the other hand, in the best case, each output

grants to a distinct input, in which case the algorithm takes only one
iteration to finish.

To avoid the worst-case behavior, we make it unlikely that outputs grant to

the same input by having each output choose among requests using an

independent random number. In Appendix A we show that, by using random-
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Table I. Percentage of Total Matches Found Within K Iterations: Uniform Work Load

Pr{input i has a Number of iterations (K)

cell for output ]) 1 2 3 4

0.10 87’% 99.870 100%
0.25 757. 97.67. 99.97% 100%
0.50 69YP 93~c 99.6% 99.997%
0.75 667. 907C 98.6% 99.9770
1.00 64Ch 88’70 97070 99.97.

ness, the algorithm completes in an average of O(log N) iterations; this result

is independent of the initial pattern of input requests. The key to the proof is

that each iteration resolves, either by matching or by removing from future

consideration, an average of at least 3/4 of the remaining unresolved requests.

The AN2 prototype switch runs parallel iterative matching for four itera-

tions, rather than iterating until no more matches can be added. There is

a fixed amount of time to schedule the switch: the time to receive one cell

at link speed. In our current implementation, using 53-byte ATM cells, field-

programmable gate arrays, and l. O-Gbit/s links, there is slightly more than

enough time for four iterations.

To determine how many iterations it would take in practice for parallel

iterative matching to complete, we simulated the algorithm on a variety of

request patterns. Table I shows the results of these tests for a 16-by-16

switch. The first column lists the probability p that there is a cell queued,

and thus a request, for a given input–output pair; several hundred thousand

patterns were generated for each value of p. The remaining columns show

the percentages of matches found within one through four iterations, where

100 percent represents the number of matches found by running iterative

matching to completion. Table I shows that additional matches are hardly

ever found after four iterations in a 16-by-16 switch; we observed similar

results for client–server request patterns.

3.3 Implementation Issues

We now consider issues in Implementing parallel iterative matching in

hardware. First, note that the overall cost of implementing parallel iterative

matching is small relative to the rest of the cost of the AN2 switch. In

addition to switch scheduling hardware, the AN2 switch has optoelectron-

ics for receiving and transmitting cells over the fiber links, a crossbar for

forwarding cells from inputs to outputs, cell buffers at each input port along

with logic for managing the buffers, and a control processor for managing

routing tables and the precomputed schedule described in the next section.

Table II lists the hardware cost of each of these functional units as a

percentage of the total cost of a 16-by-16 AN2 switch. Table II considers only

the cost of the hardware devices needed by each functional unit, not the
engineering cost of designing tlhe switch logic. We list both the actual costs for

our prototype switch and our estimate of the costs for a production version of
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Table II. AiV2 Switch Component Costs, as Proportion of Total Switch Cost

Functional unit Prototype cost ProductIon cost (est.)

Optoelectronics 48% 63%

Crossbar 40~ 5%

Buffer R.AM/logic 21% 19T0

Scheduhng logic 10% 370

Routing/control CPU 17% 10’%

the switch. To simplify the design process, we implemented most of the logic

in the AN2 prototype with Xilinx field-programmable gate arrays [Xilinx

199 1]. A production system would use a more cost-effective technology, such

as custom CMOS, reducing cost of the random logic needed to implement

parallel iterative matching relative to the rest of the cost of the switch. In

either the prototype or the production version, the cost of the optoelectronics

dominates the cost of the switch.

Parallel iterative matching requires random-access input buffers, so that

any input–output pair with a queued cell can be matched during the next

time slot. We implement this by organizing the input buffers into lists. Each

flow has its own FIFO queue of buffered cells. A flow is eligible for scheduling

if it has at least one cell queued. A list of eligible flows is kept for each

input–output pair. If there is at least one eligible flow for a given input–output

pair, the input requests the output during parallel iterative matching. If the

request is granted, one of the eligible flows is chosen for scheduling in

round-robin fashion. When a cell arrives, it is put on the queue for its flow,

and its flow is added to the list of eligible flows if it is not already there.

When a cell departs the switch, its flow may need to be removed from the list

of eligible flows. Our implementation stores the queue data structures in

SRAM and overlaps the queue manipulation with reading and writing the

cell data to the buffer RAM. Note that the mechanism for managing random-

access input buffers is also needed for providing guaranteed performance to

flows, as described in the next section.

We implement the request, grant, and accept protocol by running a wire

between every input and output. Even though this requires hardware that

grows as O(N z) for an N-by-lV switch, this is not a significant portion of the

switch cost, at least for moderate scale switches. The request and grant

signals can be encoded by a single bit on the appropriate wire. As a simple

optimization, no separate communication is required in step (3) to indicate

which grants are accepted. Instead, when an input accepts an output’s grant,

it simply continues to request that output on subsequent iterations, but drops
all other requests. Once an output grants to an input, it continues to grant to

the same input on subsequent iterations unless the input drops its request.

The thorniest hardware implementation problem is randomly selecting one

among k requesting inputs. The obvious way to do this is to generate a

pseudorandom number between 1 and k, but we are examining ways of doing
more efficient random selection. For instance, for moderate-scale switches,

the selection can be efficiently implemented using tables of precomputed

values. Our simulations indicate that the number of iterations needed by
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parallel iterative matching is relatively insensitive to the technique used to

approximate randomness.

3.4 Maximal versus Maximum Matching

It is reasonable to consider whether a switch scheduling algorithm more

sophisticated than parallel iterative matching might achieve better switch

throughput, although perhaps with higher hardware cost. Scheduling a

switch with random-access input buffers is an application of bipartite graph

matching [Tarjan 1983]. Switch inputs and outputs form the nodes of a

bipartite graph; the edges are the connections needed by queued cells.

Bipartite graph matching has been studied extensively. There are two

interesting kinds of bipartite matches: A nmximum match is one that pairs

the maximum number of inputs and outputs together; there is no other

pairing that matches more inputs and outputs. A maximal match is one

for which pairings cannot be trivially added; each node either is matched or

has no edge to an unmatched node. A maximum match must, of course, be

maximal, but the reverse is not true; it may be possible to improve a maximal

match by deleting some pairing> and adding others.

We designed parallel iterati~ e matching to find a maximal match, even

though link utilization would be better with a maximum match. One reason

was the length of time we had to make a scheduling decision; we saw no way

using current technology to do maximum matching under the time constraint

imposed by 53-byte ATM cells and gigabit-per-second links. Finding a maxi-

mum match for an N-by-N graph with M edges can take O(N X (N + M))
time. Although Karp et al. [1990] give a randomized algorithm that comes

close on average to finding a maximum match, even that algorithm can take

O(N + M) time. As discussed above, our parallel algorithm finds a maximal

match in logarithmic time, on average.

Another disadvantage of maximum matching is that it can lead to starva-

tion. The example we have used to explain parallel iterative matching (Figure

2) also illustrates this possibility. Assuming a sufficient supply of incoming

cells, maximum matching would never connect input 1 with output 2. In

contrast, parallel iterative matching does not incur starvation. Since every

output grants randomly among requests, an input will eventually receive a

grant from every output it requests. Provided inputs choose among grants in

a round-robin or other fair fashion, every queued cell will eventually be

transmitted.

In the worst case, the number of pairings in a maximal match can be as

small as 50 percent of the number of pairings in a maximum match. However,

the simulations reported below indicate that, even if it were possible to do

maximum matching (or some even more sophisticated algorithm) in one ATM

cell time slot at gigabit link speeds, there could be only a marginal benefit,

since parallel iterative matching comes close to the optimal switch perfor-

mance of perfect output queuing.

3.5 Performance of Iterative Matching

To evaluate the performance of parallel iterative matching, we compared it to

FIFO queuing and perfect output queuing by simulating each under a variety
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of work loads on a 16-by-16 switch. All simulations were run long enough to

eliminate the effect of any initial transient. As noted in Section 2, FIFO

queuing is simple to implement, but can have performance problems. Perfect

output queuing is infeasible to implement, even for a moderate-scale giga-

bit switch, but indicates the optimal switch performance given unlimited

hardware resources.

Figure 3 shows average queuing delay (in cell time slots) versus offered

load for the three scheduling algorithms: FIFO queuing, parallel iterative

matching, and perfect output queuing. Offered load is the probability that a

cell arrives (departs) on a given link in a given time slot. The destinations of

arriving cells are uniformly distributed among the outputs.

Figure 3 illustrates several points:

—At low loads, there is little difference in performance between the three

algorithms. When there are few queued cells, it does not matter (beyond
hardware implementation cost) which switch scheduling algorithm is used.

—At moderately high loads, neither parallel iterative matching nor output

queuing is limited, as FIFO queuing is, by head-of-line blocking. Parallel
iterative matching does have significantly higher queuing delay than

perfect output queuing. This is because, with output queuing, a queued cell
is delayed only by other cells at the same output. With parallel iterative

matching, a queued cell must compete for the crossbar with both cells

queued at the same input and cells destined for the same output.
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—The peak switch throughput of parallel iterative matching comes quite

close to that of perfect output queuing. Even at very high loads, the

queuing delay for parallel iterative matching is quite reasonable. For

instance, our switch, with 53-byte ATM cells and gigabit-per-second links,

will forward an arriving cell in an average of less than 13 PS when the

links are being used at 95 percent of capacity.

Figure 4 shows average queuing delay versus offered load under a nonuni-

form client-server work load. In defining the work load, 4 of the 16 ports

were assumed to connect to servers, the remainder to clients. Destinations for

arriving cells were randomly chosen in such a way that client–client connec-

tions carried only 5 percent of the traffic of client–server or server-server

connections. Here, offered load refers to the load on a server link.

The results in Figure 4 are qualitatively similar to those of Figure 3. FIFO

queuing still suffers from head-of-line blocking, limiting its maximum possi-

ble throughput. Parallel iterative matching performs well on this work load,

coming even closer to optimal than in the uniform case. The results were

similar for other client/server traffic ratios and for different numbers of

servers.

Finally, Figure 5 shows the impact of the number of iterations on the

performance of parallel iterative matching. Here the number of iterations

was varied, using the uniform work load of Figure 3. The result confirms that
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for a 16-by-16 switch there is no significant benefit to running parallel

iterative matching for more than four iterations; the queuing delay with

four iterations is everywhere within 0.5 percent of the delay, assuming

parallel iterative matching is run to completion. Note that, even with one

iteration, parallel iterative matching does better than FIFO queuing.

To summarize, parallel iterative matching makes it possible for the switch

to achieve a nearly ideal match in a short time. Moreover, the hard-

ware requirements are modest enough to make parallel iterative matching

practical for high-speed switching.

4. REAL-TIME PERFORMANCE GUARANTEES

As network and processor speeds increase, new types of high-performance

distributed applications become feasible. Supporting the demands of these
applications requires more from a network than just high throughput or low

latency. Parallel iterative matching, although fast and effective at keeping

links utilized, cannot by itself provide all of the needed services. The remain-

der of this paper discusses these issues and suggests ways of augmenting the

basic algorithm to address them,

One important class of applications consists of those that depend on

real-time performance guarantees. For example, multimedia applications

must display video frames at fixed intervals. They require that the network
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provide a certain minimum bandwidth and a bounded latency for cell deliv-

ery. Following the conventions of the ATM community, we refer to traffic with

reserved bandwidth requirements as constant bit rate (CBR ) and to other

traffic as variable bit rate (VBR ). VBR traffic is often called datagram traffic.

Switches distinguish VBR and CBR cells based on the flow identifier in the

cell header.z

To ensure guaranteed performance, an application issues a request to the

network to reserve a certain bandwidth and latency bound for a CBR flow

[Ferrari and Verma 1990]. If tlhe request can be met without violating any

existing guarantees, the networ]k grants it and reserves the required resources

on a fixed path between source and destination. The application can then

transmit cells at a rate up to its requested bandwidth, and the network

ensures that they are delivered on time. By contrast, applications can trans-

mit VBR cells with no prior arrangement. If the network becomes heavily

loaded, VBR cells may suffer arbitrary delays. But CBR performance guaran-

tees are met no matter how high the load of VBR traffic.

With CBR traffic, since we know the offered load in advance, we can afford

to spend time to precompute a schedule at each switch to accommodate the

reservations. By contrast, parallel iterative matching was devised to schedule

the switch rapidly in response to whatever VBR traffic arrives at the switch.

Our contribution is showing lhow to implement performance guarantees in

a network of input-buffered switches with unsynchronized clocks. The rest of

this section describes our approach to CBR traffic. We first describe the form

of a bandwidth request and the criterion used to determine whether it can be

accepted. We next show how a switch can be scheduled to meet bandwidth

guarantees. Finally, we show that buffers for CBR traffic can be statically

allocated and the latency of C13R cells can be bounded, even when network

switch clock rates are unsynchronized. Our approach smoothly integrates

both CBR and VBR traffic; VBR cells can consume all of the network

bandwidth unused by CBR cell~s.

Bandwidth allocations are made on the basis of frames that consist of a

fixed number of slots, where a slot is the time required to transmit one cell

[Golestani 1990]. An application’s bandwidth request is expressed as a cer-

tain number of cells per frame; if the request is granted, each switch in the

path schedules the flow into that number of frame slots and repeats

the frame schedule to deliver the promised throughput. Frame boundaries

are internal to the switch; they are not encoded on the link.

Frame size is a parameter of the network. A larger frame size allows for

finer granularity in bandwidth allocation; we will see later that smaller

frames yield lower latency. The frame size in our prototype switch is 1000

slots; a frame takes less than half a millisecond to transmit. This leads to

2 Of course, some real-time applications need performance guarantees for traffic whose band-

width varies o~er time. In this section wc consider only CBR guarantees amid datagram traffic;

in the next section, we discuss a switch scheduling algorithm that may better accommodate

real-time flows with variable bandwidth requirements.
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latency bounds that seem acceptable for multimedia applications, the most

likely use for CBR guarantees.

When a request is issued, network management software must determine

whether it can be granted. In our approach, this is possible if there is a path

from source to destination on which each link’s uncommitted capacity can

accommodate the requested bandwidth. If network software finds such a

path, it grants the request and notifies the involved switches of the additional

reservation. The application can then send each frame up to the reserved

number of cells. The host controller or the first switch on the flow’s path can

meter the rate at which cells enter the network; if the application exceeds its

reservation, the excess cells may be dropped. Alternatively, excess cells may

be allowed into the network, and any switch may drop cells for a flow that

exceeds its allocation of buffers.

Note that this allocation criterion allows 100 percent of the link bandwidth

to be reserved (although we shall see later that a small amount of band-

width is lost in dealing with clock drift). Meeting this throughput level is

straightforward with perfect output queuing [ Golestani 1990; Kalmanek

et al. 1990], but this assumes the switch has enough internal bandwidth that

it never needs to drop cells under any pattern of arriving CBR cells. With

input buffering, parallel iterative matching is not capable of guaranteeing

this throughput level.

Instead, in AN2, CBR traffic is handled by having each switch build an

explicit schedule of input–output pairings for each slot in a frame; the frame

schedule is constructed to accommodate the guaranteed traffic through the

switch. The Slepian–Dugaid theorem [Hui 1990] implies that such a schedule

can be found for any traffic pattern, so long as the number of cells per frame

from any input or to any output is no more than the number of slots in a

frame; in other words, so long as the link bandwidth is not overcommitted.

When a new reservation is made, it may be necessary to rearrange the

connections in the schedule. We are free to rearrange the schedule, since our

guarantees depend only on delivering the reserved number of cells per frame

for each flow, not on which slot in the frame is assigned to each flow. The slot

assignment can be changed dynamically without disrupting guaranteed

performance.

An algorithm for computing the frame schedule follows [Hui 1990]: Sup-

pose a reservation is to be added for k cells per frame from input P to output

Q; P and Q have k free slots per frame, or else the reservation cannot be

accommodated. We add the reservation to the schedule one cell at a time.
First, if there is a slot in the schedule where both P and Q are unreserved,
the connection can be added to that slot. Otherwise, we must find a slot

where P is unreserved and a different slot where Q is unreserved. These

slots must exist if P and Q are not overcommitted. The algorithm swaps

pairings between these two slots, starting by adding the connection from P to

Q to either of the two slots. This will cause a conflict with an existing

connection (e.g., from R to Q); this connection is removed and added to the

other slot. In turn, this can cause a conflict with an existing connection (from

R to S), which is removed and added to the first slot. The process is repeated
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until no conflict remains. It can be shown that this algorithm always

terminates.

Figure 6 provides an example of reservations and a schedule for a frame

size of three slots; Figure 7 illustrates the modification to the schedule

needed to accommodate an additional reservation of one cell per frame from

input 2 to output 4. Because there is no slot in which both input 2 and

output 4 are free, the existing schedule must be shuffled in order to accom-

modate the new flow. In the example, we added the connection to slot 3 and

swapped several connections between slots 1 and 3.

Computing a new schedule may require a number of steps proportional to

the size of the reservation (in cells/frame) X N, for an N-by-N switch.

However, the test for whether a switch can accommodate a new flow is much

simpler; it is possible so long as the input and output link each have adequate

unreserved capacity. Once a feasible path is found, the selected switches can

compute their new schedules in parallel.

CBR cells are routed across the switch during scheduled slots. VBR cells

are transmitted during slots not used by CBR cells. For example, in Figure 6,

a VBR cell can be routed from input 2 to output 3 during the third slot. In

addition, VBR cells can use an allocated slot if no cell from the scheduled flow

is present at the switch.

Prescheduling the switch ensures that there is adequate bandwidth at each
switch and link for CBR traffic. It is also necessary to have enough buffer

space at each switch to hold cells until they can be transmitted; otherwise,
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some cells would be lost. The AN2 switch statically allocates enough buffer

space for CBR traffic. VBR cells use a different set of buffers, which are

subject to flow control.

In a network where switch clock rates are synchronized, as in the tele-

phone network, a switch needs enough buffer space at each input link for two

frames worth of cells [Golestani 1990; Zhang and Keshav 1991]. Note that

one frame of buffering is not enough, because the frame boundaries may not

be the same at both switches and because the switches can rearrange their

schedules from one frame to the next.

The situation becomes more complicated when each switch or controller’s

clock can run at a slightly different rate. The time to transmit a frame of cells

is determined by the local clock rate at the switch or controller. Thus, an

upstream switch or controller with a fast clock rate can overrun the buffer

space for a slow downstream switch, by sending cells at a faster rate than the

downstream switch can forward cells. More deviously, a switch may run more

slowly for a time, building up a backlog of cells, and then run faster, dumping

the backlog onto the downstream switch.

Our solution assumes that the clock rates on all switches and controllers

are within some tolerance of the same rate. We then constrain the network

controllers to insert cells at a slower rate than that of the slowest possible

downstream switch. We do this by adding extra empty slots to the end of each

controller (but not switch) frame, so that, even if the controller has a fast

clock and a switch has a slow clock, the controller’s frame will still take

longer than the switch’s frame. Because the rate at which controllers insert

cells is constrained, a fast switch can only temporarily overrun a slower

downstream switch; we need to allocate enough buffer space to accommodate

these temporary bursts. Over the long run, cells can arrive at a switch only at

the rate at which they are inserted by the network controller.

We derive the exact bound on the buffer space required in Appendix B as a

function of network parameters: the switch and controller frame sizes, the

network diameter, and the clock error limits. Four or five frames of buffers

are sufficient for values of these parameters that are reasonable for local-area

networks.

Now consider latency guarantees. If switch clocks are synchronized, a cell

can be delayed at most two frame times at each switch on its path (Golestani

1990; Zhang and Keshav 1991]. Let p be the number of hops in the cell’s

path, ~ the time to transmit a frame, and / an upper bound on link latency

plus switch overhead for processing a cell. Then the total latency for a cell is

less than p(2 ~ + 1). When switches are not synchronized, the delay experi-

enced by a cell at a particular switch may be larger than (2 f + Z), but the

end-to-end dela.v is still bounded by p(2 f + l). Again, the derivation is

presented in Appendix B. This yields latency bounds in AN2 that are ade-

quate for most multimedia applications. A smaller frame size would provide

lower CBR latency, but as already mentioned, it would entail a larger

granularity in bandwidth reservations. We are considering schemes in which

a large frame is subdivided into smaller frames. This would allow each
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application to trade off a guarantee of lower latency against a smaller

granularity of allocation.

To summarize, bandwidth and latency guarantees are provided through

the following mechanisms:

—Applications request bandwidth reservations in terms of slots \frame.

—The network grants a request if it can find a path on which each link has

the required capacity.

—Each switch, when notified of a new reservation, builds a schedule for

transmitting cells across the switch.

—-Enough buffers are permanently reserved for CBR traffic to ensure that

arriving cells will always find an empty buffer.

—Latency is bounded by a simple function of link latency, path length, and

frame size.

5. STATISTICAL MATCHING

The AN2 switch combines the methods described in the previous two sections

to provide low latency and high throughput for VBR traffic and guaranteed

performance for CBR traffic. In this section we present a generalization of

parallel iterative matching, called statistical matching, that can efficiently

support frequent changes of bandwidth allocation. In contrast, the Slepian–

Duguid technique for bandwidth allocation works well so long as allocations

are not changed too frequently, since changes require computing a new

schedule at each switch. One motivation for dynamic bandwidth allocation is

to provide fair sharing of network resources among competing flows of VBR

traffic. Another is to support applications that require guaranteed perfor-

mance and have bandwidth requirements that vary over time, as can be the

case with compressed video.

Statistical matching works by systematically using randomness in choosing

which request to grant and which grant to accept. We might say that parallel

iterative matching uses fair dice in making random decisions; with statistical

matching, the dice are weighted to divide bandwidth between competing

flows according to their allocations. About 72 percent of the bandwidth can be

reserved using our scheme; the remaining bandwidth can be filled in by

normal parallel iterative matching. The first implementation of the AN2

switch does not implement statistical matching.

In this section we first motivate statistical matching by briefly discussing

network fairness and then describe the statistical matching algorithm.

5.1 Motivation

Ramakrishnan and Jain [1990] provide a formal definition of fairness in the

allocation of fietwork resources. To be fair, every user should receive an equal

share of every network resource that does not have enough capacity to satisfy

all user requests. If a user needs less than its equal share, the remainder
should be split among the other users. One result of a fair network, then, is

that users typically see graceful degradation in performance under increased
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load. Adding an additional user to an already crowded system will result in a

relatively small decrease in everyone else’s resource allocation.

Unfortunately, an arbitrary topology network built out of switches using

parallel iterative matching may not be fair, for two reasons: First, to be

scheduled, a queued cell needs to receive a grant from its output and to have

its input accept the grant. Both the input and output ports are sources of

contention; parallel iterative matching tends to give higher throughput to

input–output connections that have fewer contending connections. In Figure

8, for instance, if input 4 chooses randomly which grant to accept, the

connection from input 4 to output 1 receives only one-sixteenth of the link

throughput; all other connections receive five times this bandwidth.

Second, even if switches allocate output bandwidth equally among all

requesting input ports, arbitrary topology networks using these switches may

not share bandwidth fairly among users or flows [Demers et al. 1989].3

Depending on the work load and the topology of the network, each switch

input may have a different number of flows. A flow reaching a bottleneck link

at the end of a long chain of switches may receive an arbitrarily small portion

of the link throughput, while another flow merging closer to the bottle-

neck receives a much larger portion. Unfortunately, this pattern is quite

likely when one host is a highly used server. Figure 9 illustrates what

happens when four flows share a bottleneck link. Each letter represents a

cell; switches are assumed to select input ports round-robin. In a fair alloca-

tion, each flow would receive the same throughput on the rightmost link, but

flows c and d receive much less throughput than does flow a.

A number of approaches to fairness in arbitrary topology networks have

been proposed. One class of techniques involves using some measure of

network load to determine a fair allocation of bandwidth among competing

flows. Once such an allocation has been determined, the problem remains of

dividing network resources according to the allocation. For example, Zhang

[1991] suggests a virtual clock algorithm. Host network software assigns

each flow a share of the network bandwidth and notifies each switch along

the flow’s path of the rate to be delivered to the flow. When a cell arrives at a

switch, it is assigned a time stamp based on when it would be scheduled if the

network were operating fairly; the switch gives priority to cells with earlier

time stamps.

The virtual clock algorithm requires that each output link can select

arbitrarily among any of the cells queued for it. This is the case in a switch

with perfect output queuing. In our input-buffered switch, however, only one
cell from each input can be forwarded at a time. Section 4 has given one way

of supporting bandwidth allocation in an input-buffered switch. Statistical

matching is another approach, one that is more suited to the rapid changes in

allocation needed to provide fairness.

a A “network user” may, of course, be sending more than one flow of cells through a switch, for

example, to dfferent hosts. For slrnphcity, though, the remainder of our discussion assumes that

our target IS fairness among flows as an approximation to fairness among users.
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5.2 Algorithm

Statistical matching, like using a precomputed frame schedule, delivers to

each flow a specified portion of the link throughput. With statistical match-

ing, up to (1 – (1/e))(l + (1/e2 )), or 72 percent, of each link’s throughput can

be reserved; the throughput allocation can be in any pattern, provided the

sum of the throughputs at any input or output is less than 72 percent. Any

slot not used by statistical matching can be filled with other traffic by parallel

iterative matching. However, the adjustment of throughput rates is more

efficient with statistical matching than with a precomputed schedule, because

only the input and output ports used by a flow need be informed of a change

in its rate.

Statistical matching is based (on parallel iterative matching, but it makes

more systematic use of randomness in making and accepting grants. The

pairing of inputs to outputs is chosen independently for each time slot, but on

average, each flow is scheduled according to its specified throughput rate.

The algorithm mirrors parallel iterative matching except that there is no

request phase.

We divide the allocatable bandwidth per link into X discrete units; X,, ~

denotes the number of units allocated to traffic from input i to output j. The

key is that we arrange the random weighting factors at the inputs and

outputs so that each input receives up to X uirtual grants, each made

independently with probability I/X. X,, ~ of the potential virtual grants to
input i are associated with output j. If input i then chooses randomly among
the virtual grants it receives, it will connect to each output with probability

proportional to its reservation.
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We outline the steps of the algorithm here, using the simplifying assump-

tion that switch bandwidth is completely allocated. Appendix C presents a

precise definition of the algorithm without this assumption and shows that it

delivers up to 72 percent of the link throughput.

(1) Each output randomly chooses one input to grant; output j chooses input
z with probability y Xl, ~/X proportional to the bandwidth reservation.

(2) If an input receives any grants, it chooses at most one grant to accept (it
may accept none) in a two-step process:

(a) The input reinterprets the grant as zero or more virtual grants, so

that the resulting probability that input i receives k virtual grants

from output j is just the binomial distribution—the likelihood that

exactly k of X independent events occur, given that each occurs with

probability l/X.

(b) If an input receives any virtual grants, it chooses one randomly to
accept; the output corresponding to the accepted virtual grant is then

matched to the input.

Since each virtual grant is made with probability I/X, the likelihood that

an input receives no virtual grants (and thus is not matched) by the above

algorithm is ((X – l)/X)x. As X grows large, this approaches l/e from

below. Since each virtual grant is equally likely to be accepted, the probabil-

ity of a connection between an input i and an output .j is (X, ~/X)(1 – (l/e)),

or about 63 percent of X,, ~/X.

Better throughput can be achieved by running a second iteration of statisti-

cal matching. The grant/accept steps are carried out independently of the

results of the first iteration, but a match made by the second iteration is

added only if both the input and output were left unmatched by the first

iteration. Conflicting matches are discarded. We show in Appendix C that a

match is added by the second iteration with probability (for large X) (l/ez )

(1 – ( l\e))( X, ~\X), yielding the ability to reserve a total of 72 percent of

the link bandwidth. Additional iterations yield insignificant throughput

improvements.

Statistical matching requires more hardware to implement than does

parallel iterative matching, although the cost is not prohibitive. Steps (1) and

(2a) can both be implemented as table lookups. The table is initialized with
the number of entries for each outcome proportional to its probability; a

random index into the table selects the outcome. Step (2b) is a generalization

of the random choice among requests needed by parallel iterative matching;
similar implementation techniques apply.

5.3 Discussion

We motivated statistical matching by suggesting that it could be used to

schedule the switch fairly among competing flows. Statistical mat thing

appears to meet many of the goals that motivated Zhang’s [1991] virtual clock

approach. With either approach, the switch can be set to assign equal

throughput to every competing flow through a bottleneck link. Statistical
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matching can provide roughly equal throughput without the need for tagging

individual cells with time stamps and prioritizing flows based on those time

stamps, although some unfairness may be added when parallel iterative

matching fills in gaps left by statistical matching. With statistical matching,

as with the virtual clock approach, a flow can temporarily send cells faster or

slower than its specified rate, provided the throughput is not exceeded over

the long term. Queues in the network increase if the flow sends at a faster

rate; queues empty as the flow sends at a slower rate. The virtual clock

approach also provides a way of monitoring whether a flow is exceeding its

specified rate over the long tsrm; there is no analogue with statistical

matching.

6. SUMMARY

We have described the design of the AN2 switch, which can support high-

performance distributed computing. Key to the switch’s operation is a tech-

nique called parallel iterative matching, a fast algorithm for choosing a

conflict-free set of cells to forwamd across the switch during each time slot.

Our prototype switch combines this with a mechanism to support real-time

traffic, even in the presence of clock drift. The switch will be used as the

basic component of an arbitrary topology point-to-point local-area network,

providing

(1) high bandwidth;

(2) low latency for datagram traffic, so long as the network is not overloaded;
and

(3) bandwidth and latency guarantees for real-time traffic.

In addition, the switch’s scheduling algorithm can be extended to allocate

resources fairly when some part of the network is overloaded.

We believe that the availability of high-performance networks with these

characteristics will enable a new class of distributed applications. Networks

are no longer slow, serial, highly error-prone bottlenecks where message

traffic must be carefully minimized in order to get good performance. This

enables distributed systems to be more closely coupled than has been possible

in the past.

APPENDIX A. Number of Iterations for Parallel Iterative Matching

In this Appendix we show that the parallel iterative matching algorithm

described in Section 3 reaches a maximal match in an average of O(log IV)

iterations for an lV-by-IV switch. This bound is independent of the pattern of

requests. The key to the proof is to observe that, if an unmatched output

receives a request, one iteration of parallel iterative matching will usually

either (1) match the output to one of its requesting inputs or (2) match most

of the inputs requesting that output to other outputs. The result is that each
iteration reduces the number of unresolved requests by an average of at least

3/4. A request is unresolved if both its input and its output ports remain

unmatched.
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Consider the requests to each output separately. Suppose an output Q

receives requests from n inputs during some iteration. Of these n inputs,

some fraction will request and receive a grant from some output besides Q,

and the rest will receive no grants from other outputs. Let k be the number

of inputs requesting Q that receive no other grants.

Q randomly chooses one of its n requests to grant. Since Q chooses among

the requesting inputs with equal probability and since Q’s choice is indepen-

dent of the choices made by other outputs, the probability that Q will grant

to an input that has a no-competing grant from another output is k/n. In

this case, Q’s grant will be accepted, and as a result, all of the n requests

to Q will be resolved: One will be accepted, while the rest will never be

accepted.

On the other hand, with probability 1 – (k/n), Q will grant to an input

that also receives a grant from some other output. If the input picks Q’s grant

to accept, all of the requests to Q will be resolved. But even if Q’s grant is not

accepted, all of the n – k inputs that received a grant will be matched (to

some other output) during this iteration; none of their n – k requests to Q

will remain on the next iteration.

Thus, with probability k/n all requests to Q are resolved, and with

probability 1 – (k/n) at most k remain unresolved. As a result, the average

number of unresolved requests to Q is at most ( 1 — (k/n)) x k, which is no

greater than n/4 for any k. Since we start with at most Nz requests, this

implies that the expected number of unresolved requests after i iterations is

at most iV2/4’.
It remains to be shown that the algorithm reaches a maximal match in an

average of O(log N ) steps. Let C be the step on which the last request is

resolved. Then the expected value of C is

E[C] = ~iPr{C= i}.
~=1

Rewriting the sum yields

E[C] = ~Pr{C> i}. (1)
~=o

The likelihood that C > i is just the likelihood that at least one match

remains unresolved at the end of i iterations:

.
Pr{C > i} = ~ Pr{j requests remain after i iterations}.

~=1

Replacing the sum by an obviously larger one,

,. N2
l?r{C > i} S ~ j Pr{j requests remain after i iterations} < ~.

~=1

Here the final inequality comes from the previously derived bound on the

average number of unresolved matches after i iterations.
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Since a probability can never be greater than 1, Pr{C > i} < min(l, Nz/4’ ).

Substituting into Formula 1 yields

Since Nz = 4’ when Iogz N = i, the sum has no more than logs N terms with

the value 1, and the remainder of the sum is a power series bounded by 4/3.

Thus,

EIC]I <logz N+ $

APPENDIX B. Bounds on Latency and Buffer Space for CBR Traffic

In this Appendix we show that we can provide end-to-end guaranteed perfor-

mance for constant bit rate flows, even if the clocks in the network switches

and controllers are known only to run at approximately the same rate,

within some tolerance. As discussed in Section 4, a frame schedule is precom-

puted at each switch, assigning a flow’s cells to a fixed number of frame slots.

Because the frame rate depends on the clock rate in each switch, the

bandwidth delivered to a flow varies slightly (and unpredictably) at each

switch in the flow’s path. We address this by adding extra empty slots to each

controller (but not switch) frame, to constrain the controller frame rate to be

slower than the frame rate of the slowest possible downstream switch, Using

this constraint and some natural ground rules for controller and switch

operation, we can demonstrate bounds on both a flow’s end-to-end latency

and its buffer-space requirements. A flow’s end-to-end throughput is bounded

by its rate on the slowest possiblle controller. Because each flow has its own

reserved buffer space and bandwidth, the behavior of each flow is indepen-

dent of the behavior of other flows; our discussion focuses on a single flow at a

time.

Table III summarizes a number of terms used in our proof. The minimum

and maximum frame times are in terms of real “wall-clock time, that is, the

nominal time for one slot X the number of slots per frame X the maximum or

minimum possible clock rate. Ncke that FC ~,. > F._ ~ ~~: The frame of the

Table 111. Symbol Definitions

Symbol Definition

F .-rn,n,F,-ma. Minimum, maximum time for a switch frame

F F Minimum, rnaxlmum izme for a controller framec–n,?n~ c—ma.

1 Maximum link latency and switch overhead

P Flow’s path length (number of hops)

CL zth cell transmitted m a flow

s,, nth switch in a flow’s path, O - n = p

T(c,, S’n) Time at the end of the frame in which cell c, departs switch s.

I,(CL, sn) Adjusted latency, T( c,, S.) – T(cI, so)
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fastest controller is constrained to be longer than the frame of the slowest

switch. The link latency 1 is the maximum wall-clock time from when a cell

departs one switch to when it is first eligible to be forwarded at the next

switch, including any processing overhead at the switch. Finally, the adjusted

latency, L(cI, s.), is the wall-clock time from the end of the frame in which

cell c, departs the controller SO to the end of the frame in which the cell

departs switch s.. We use the adjusted latency instead of the true latency

because it is independent of which slots within a frame are allocated to a

particular flow.

We temporarily make the simplifying assumption that each flow reserves

only a single cell per frame; we remove this assumption later in this section.

Each controller and switch obeys the reservation: Each forwards at most one

cell per frame for each flow. Furthermore, switches forward cells in FIFO

order, with no needless delays: If a cell has arrived at a switch and is eligible

for forwarding at the beginning of a frame, then either that cell or an earlier

(queued) cell from the same flow is forwarded during the frame.

B.1 Bounded Latency

The key observation to bounding the end-to-end latency is that if two cells, c,

and C,+l, depart a switch s. in consecutive frames, then the adjusted latency

of CL+ ~ is less than that of c,. This is because C, and CL+ ~ must depart the

controller in separate frames, and frames take longer at the controller so

than at any switch s,:

Z’(c, +1, sn) – l’(c,, sn)-3’-nLaz

T(cL+l, s.) – T(c, +1, sO)

IJc, +1, sn)

Note that the queuing delay that cell

be longer than that of the previous

latency will be shorter than c,’s.

< FC_~l~ ~T(cL+l, sO) — T(c, ,sO),

< T(cL, s.) – T(cL, sO),

<L(cl, sn). (2)

c,+ ~ experiences at switch s. may well

cell cl, but c,+ ~‘s end-to-end adjusted

We define an active frame to be one in which a cell is forwarded to the next

switch. Because switch frames occur more frequently than controller frames,

at each switch there will be sequences of active frames interspersed with

inactive frames (when there is no cell available to be forwarded). The conse-

quence of formula (2) is that the worst-case adjusted latency at a switch s. is

experienced by some cell c1 that is sent in the first in a sequence of active

frames; that is, the cell must be sent in a frame immediately after a frame

when the switch had nothing to forward. Because we assume the switch does

not needlessly delay cells, c, must have arrived at switch s. after the

previous (inactive) frame started; in other words, no more than two frames

before c, departed switch s.. The cell must have departed the upstream

switch s._ ~ no earlier than T(cL, s.) – (2F,_~~X + 1). Since cl’s adjusted

latency in departing from the upstream switch s._ ~ is likewise bounded by

some fh-st cell in a sequence of active frames, by induction we have

L(CL, SP)=2P(F, -.,.X + 1). (3)
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B.2 Bounded Buffer-Space Requirements

We next derive bounds for the buffer space required at each switch. Clearly, a

bound must exist because end-to-end latency is bounded; in this subsection,

we develop a precise formula for the bound.

First, observe that there is a bound on the maximum number of consecu-

tive active frames. Formula (2) implies that, with each successive active

frame, adjusted latency decreases by at least F,_ ~1~ – F,_ ~~x. But formula

(3) implies that there is also a maximum adjusted latency. The mini-

mum adjusted latency is —FC ~~,; this is negative because of the defini-

tion of adjusted latency: A cell can depart the first switch SI in a frame that

finishes before the controller so’s frame does. Thus, the maximum sequence of

active frames is

1

~ + (2F, -ma. + ZJP + Fe-ma.

IF.-m. – F..nza, ‘

Since the frames immediately before and after this sequence are inactive,

there could not be a cell queued at the beginning of the frame before the first

active frame or at the end of the last active frame in the sequence. This

means that the maximum length of time that a switch can continuously have

a cell queued4 is

H (2 F,-max + l)p + Fc. n,ax
F,-m.. 2+ –

F c–mln 1)
–F,_~~x “

(4)

During any period of time t, the maximum number of cells that could

arrive at a switch is 2 + [t/F, _ ~1~ ]. Two cells can depart the upstream

switch, one at the end of a frame and the other at the beginning of the next

frame, both arriving at the beginning of the time period. From then on, the

arrival rate is limited by the fastest possible switch frame rate. Analogously,

the minimum number of cells that must depart the switch during an interval

t in which there are queued cells is [t/F, _ ~~, ] – 1.

The buffer space needed at a switch can be bounded by the difference in the

maximum arrival rate and the minimum departure rate, over the maximum

interval for which queued cells can be present. Substituting that interval

(formula (4)) for t in the arrival and departure rates derived above, the buffer
space required is no more than

F – F,_~,~
4+ ‘-m;

(

z + (2%m.z + l)P + F.-ma.

F –F )
(5)

b—mtn c- m2n s—max

The above results were derived assuming that each flow reserved only a

single cell per frame. For a flow of h cells per frame, we must change the

rules on switch and controller operation in the obvious way: No switch or

controller forwards more than k cells of the flow in the same frame; cells are

forwarded in FIFO order; and if a cell arrives at a switch before the beginning

‘ We consider only the buffer space needed by queued cells that are ehable for forwarding;

additional (implementation-dependent) buffer space may be needed by cells that are in the

process of arriving at the switch.
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of a frame, it is either forwarded in the frame, or k previous cells of the flow

are forwarded. If we consider (for purposes of analysis) a flow of k cells per

frame to be partitioned into k classes, with cell c, assigned to class (i mod k),

the cells of a single class will be treated (under these rules of operation) as if

they belonged to a flow with one cell per frame.

Thus, the buffer space required for a CBR flow is a constant factor times

the number of reserved cells per frame, and the buffer space required for all

flows is (4 + c) times the frame size, where c is governed by formula (5). The

value of c is determined by network parameters: clock skew, link and switch

delay, network diameter, and the difference between controller and

switch frame size. For many common local-area network configurations, c is

small; it can be made arbitrarily small by increasing controller frame size, at

some cost in reduced throughput.

APPENDIX C. Statistical Matching Throughput

In this Appendix we describe the statistical matching algorithm more com-

pletely and show that it allows up to (1 – (1/e))(l + (1/e2 )) = 0.72 of the

switch throughput to be allocated in any arbitrary pattern. Recall from

Section 5.2 that we divide the allocatable bandwidth per link into X discrete

units; X, ~ denotes the number of units allocated to traffic from input i to

output j. We assume temporarily that the switch bandwidth is completely

allocated; we will remove this assumption shortly.

The algorithm follows:

(1) Each output j randomly chooses an input i to grant to, with probability
proportional to its reservation

x
Pr{j grants to i} = ~.

(2) Each input chooses at most one grant to accept (it may accept none) in a

two-step process:

(a) Each input i reinterprets each grant it receives as a random number
mL ~ of virtual grants, chosen between O and Xl,, according to the

probability distribution

x
‘x, ,’

Pr{m,, j =0}= 1–Pr{l<m l,j ~x,,l}.

When j does not grant to i, m,, , is set to zero.

(b) If an input receives any virtual grants, the input chooses one ran-
domly to accept. In other words, the input chooses among granting
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outputs with probability proportional to the number of virtual grants

from each output:
m

Pr{i accepts j} = ‘‘] .
‘k ‘,, k

If a grant is accepted, the input randomly chooses among the flows for the

connection according to their bandwidth reservations.

The key to the algorithm is that each input i receives the same number of

virtual grants from an output j that it would receive had each of the virtual

grants been made with probab dity l/X by an independent output. To see

this, note that the probability that exactly m of Xl, ~ events occur, given that

each occurs with probability l/.Y, has the binomial distribution

(6)

Of course, an input i can receive a virtual grant from output j only if j

sends a physical grant to i in step (l):

Pr{m,, J = m, m > O} = Pr{j grants to i}

X Pr{i chooses m, ~ = m, m > Oljgrantsto i}. (7)

Substituting in formula (7) with the probabilities from steps (1) and (2a) in

the algorithm, we see that the probability that input i chooses m, ~ = m is

exactly the binomial distribution from formula (6), for m > 0. Since the

probabilities in both cases must sum to one, it follows that the probability

that input i chooses m,, ~ = O is also as specified by the binomial distribution.

If an input receives any virtual grants, it randomly chooses one among

them to accept. By the argument above, the input receives no virtual grant

from any output with probability ((X – I)/X)x. Otherwise, the input matches

some output, and because each virtual grant is made and accepted with equal

likelihood, each output is matched with probability proportional to its

reservation:

Pr{i matches j} = ~.(l-(~)x) =~xPr{matches}

x
= < X Pr{j matches}.

x

As X becomes large, (1 – ((X – I)/X)x) approaches 1 – l/e = 0.63 from

above.

This result implies a rather surprising fact: The probability that a given

output matches is independent of the input to which it grants:

x
~ x Pr{j matches} = Pr{ i lmatches j}
x

= Pr{i lmatches jl j grants to i} x Pr{ j grants to i}

x
= Pr{ z lmatches jl j grants to i} x ~
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or

Pr{j matches) = Pr{j matches Ij grants to i}.

This fact is useful in analyzing the effect of running a second iteration of

statistical matching. The second iteration is run independently of the first. If

input i and output ~“ are matched on the second round, a connection between

them is made provided that neither was matched on the first round:

Pr{i matches j in two rounds}

= Pr{i matches j in round 1}

+ Pr{ i matches j in round 2 and neither matches in round 1).

Now, matches in the two rounds are independent and equally likely. More-

over, the events “i unmatched on the first round and “j unmatched on

the first round” are either independent or positively correlated. Consider the

probabilities of i and/or j being matched conditional on each possible

recipient of j’s grant. If j grants to i, then it is impossible for j to be matched

while i is unmatched, so “i unmatched” and “j unmatched” cannot have

negative correlation. Now suppose j grants to some other input k # i and

there is no output k such that X~, ~ and X,, ~ are both positive. Then the

events “i unmatched” and “j unmatched” are independent, because no other

choice made in the algorithm affects both events. Finally, suppose j grants to

h # i and there is an output k such that Xk, ~ and X,, ~ are both positive.

Then the potential matching of h to k conflicts both with the matching of i to

k and that of h to j, inducing a positive correlation between the events “i

unmatched” and “j unmatched.” We have now established that

Vx (Pr{ i and j unmatched j grants to x}

> Pr{ i unmatched j grants to X}

x Pr{ j unmatched j grants to x}).

Using the previous result that the probability of j matching is independent of

the input to which it grants, and summing over all inputs x, we have

Pr{i and j unmatched} > Pr{i unmatched} X Pr{j unmatched}.

Finally, we can conclude that

Pr{i matches j in two rounds} > Pr{i matches j in round 1}

+ Pr{ i matches j in round 2}

X Pr{ i unmatched in round 1}

x Pr{j unmatched in round 1}

The last step in the analysis is to consider what happens when the switch

is not fully reserved. On each round, an input i (or output ~’) with less than a

full reservation can simulate being fully reserved by assigning the unre-

served bandwidth, denoted by X,, ~ (resp., XO, ~’), to an imaginary output

(input). If output j is less than fully reserved, it simulates granting to its
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imaginary input (i.e., sends no grant to any real input) with probability

XO, ~\X. Similarly, an input i that is less than fully reserved randomly

chooses a number ml, ~ of virtua 1 grants from its imaginary output, using the

probability distribution

Pr{rn,, O =nz, O <m SX,,,o} =
(:’) x (Yx (w-m

The input accepts such grants, (by rejecting grants from real outputs) in

proportion to their number, just as for grants from real outputs. When a

second-round match conflicts with a first-round match to an imaginary input

or output, it is not necessary to discard the second-round match. Retaining it

can on] y increase the throughput derived above.
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