
Swift: Delay is Simple and Effective for Congestion Control in
the Datacenter

Gautam Kumar, Nandita Dukkipati, Keon Jang (MPI-SWS)∗, Hassan M. G. Wassel, Xian Wu, Behnam Montazeri,
Yaogong Wang, Kevin Springborn, Christopher Alfeld, Michael Ryan, David Wetherall, and Amin Vahdat

Google LLC

ABSTRACT
We report on experiences with Swift congestion control in Google
datacenters. Swift targets an end-to-end delay by using AIMD con-
trol, with pacing under extreme congestion. With accurate RTT
measurement and care in reasoning about delay targets, we find
this design is a foundation for excellent performance when network
distances are well-known. Importantly, its simplicity helps us to
meet operational challenges. Delay is easy to decompose into fabric
and host components to separate concerns, and effortless to deploy
and maintain as a congestion signal while the datacenter evolves.
In large-scale testbed experiments, Swift delivers a tail latency of
<50µs for short RPCs, with near-zero packet drops, while sustaining
∼100Gbps throughput per server. This is a tail of <3× the minimal
latency at a load close to 100%. In production use in many different
clusters, Swift achieves consistently low tail completion times for
short RPCs, while providing high throughput for long RPCs. It has
loss rates that are at least 10× lower than a DCTCP protocol, and
handles O(10k) incasts that sharply degrade with DCTCP.

CCS CONCEPTS
• Networks → Transport protocols; Data center networks;

KEYWORDS
Congestion Control, Performance Isolation, Datacenter Transport
ACM Reference Format:
Gautam Kumar, Nandita Dukkipati, Keon Jang, Hassan M. G. Wassel, Xian
Wu, Behnam Montazeri, Yaogong Wang, Kevin Springborn, Christopher
Alfeld, Michael Ryan, David Wetherall, and Amin Vahdat. 2020. Swift: Delay
is Simple and Effective for Congestion Control in the Datacenter. In Annual
conference of the ACM Special Interest Group on Data Communication on the
applications, technologies, architectures, and protocols for computer communi-
cation (SIGCOMM ’20), August 10–14, 2020, Virtual Event, USA. ACM, New
York, NY, USA, 15 pages. https://doi.org/10.1145/3387514.3406591

1 INTRODUCTION
The need for low-latency operations at datacenter scale continues
to grow. A key driver is the disaggregation of storage, compute, and
memory across the network for cost savings [7, 18, 20, 28, 40, 41, 45].
With disaggregation, low-latency messaging is needed to tap the
potential of next-generation storage. For example, industry best
practices call for 100µs access latency at 100k+ IOPS to use Flash
effectively [30, 31]. Upcoming NVMe [55, 56] needs 10µs latency

*The author contributed to this work while at Google.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7955-7/20/08.
https://doi.org/10.1145/3387514.3406591

at 1M+ IOPS, else expensive servers sit idle while they wait for
I/O [9]. Tight tail latency is also important because datacenter
applications often use partition-aggregate communication patterns
across many hosts [16]. For example, BigQuery [51], a query engine
for Google Cloud, relies on a shuffle operation [11] with high IOPS
per server [36]. Congestion control is thus a key enabler (or limiter)
of system performance in the datacenter.

In this paper, we report on Swift congestion control that we
use in Google datacenters. We found protocols such as DCTCP [1]
inadequate because they commonly experience milliseconds of
tail latency, especially at scale. Instead, Swift is an evolution of
TIMELY [38] based on Google’s production experience over the
past five years. It is designed for excellent low-latency messaging
performance at scale and to meet key operational needs: deploying
and maintaining protocols while the datacenter is changing quickly
due to technology trends; isolating the traffic of tenants in a shared
fabric; efficient use of host CPU and NIC resources; and handling a
range of traffic patterns including incast.

Swift is built on a foundation of hosts that independently adapt
rates to a tarдet end-to-end delay. We find that this design achieves
high levels of performance when we accurately measure delay
with NIC timestamps and carefully reason about targets, and has
many other advantages. Delay corresponds well to the higher-level
service-level objectives (SLOs) we seek to meet. It neatly decom-
poses into fabric and host portions to respond separately to different
causes of congestion. In the datacenter, it is easy to adjust the delay
target for different paths and competing flows. And using delay as a
signal lets us deploy new generations of switches without concern
for features or configuration because delay is always available, as
with packet loss for classic TCP.

Compared to other work, Swift is notable for leveraging the
simplicity and effectiveness of delay. Protocols such as DCTCP [1],
PFC [49], DCQCN [59] and HPCC [34] use explicit feedback from
switches to keep network queues short and RPC completion times
low. They can provide good performance, but they do not help under
large incasts and IOPS-intensive workloads. In particular, conges-
tion build-up on hosts is a practical concern that is not addressed.
Tight coordination with switches also complicates deployability
and maintainability. Other protocols exemplified by pFabric [3],
pHost [21], Homa [39], and NDP [23] explicitly schedule RPCs
or flows based on their sizes or deadlines. They can deliver good
performance for short RPCs, even at high load. Yet they are more
complex to implement, deploy, and maintain, especially when there
is coordination between switches and hosts. Moreover, they are
not a fit for multi-tenant environments, in which a large RPC for
one tenant may be of higher priority than a small RPC for another
tenant.

We present results from using Swift for business-critical work-
loads that make up a substantial fraction of Google’s network traffic.
Swift allows us to maintain low end-host and switch queuing de-
lays in clusters with diverse workloads, including bursty/incast

514

https://doi.org/10.1145/3387514.3406591
https://doi.org/10.1145/3387514.3406591

Kumar et al.

Media Size Access time IOPS Bandwidth
HDD 10-20TiB >10ms <100 120MB/s
Flash <10TiB ∼100µs 500k+ 6GB/s
NVRAM <1TiB 400ns 1M+ 2GB/s per channel
DRAM <1TiB 100ns – 20GB/s per channel

Table 1: Single-device Storage characteristics

communication patterns. At the network level, Swift delivers high
utilization, sustaining a per-server throughput close to 100Gbps
(100% load) at the same time maintaining low delay and near-zero
loss. As a reference point, the DCTCP loss rate is at least 10x higher
from moderate to high load. At the application layer, Swift provides
short RPC completion times for intensive storage and analytics
workloads. For a demanding in-memory shuffle service [51, 57, 58],
Swift achieves average latency close to the baseline delay for short
transfers. By handling host congestion effectively, Swift sustains
high IOPS even under incasts of O(10k) flows. We detail these results
and more in the paper.

We draw several conclusions from our experiences. First, delay as
a congestion signal has proven effective for excellent performance
with a simplicity that has helped greatly with operational issues.
In fact, Swift’s design has been simplified from TIMELY, as it finds
the use of an absolute target delay to be performant and robust.
Second, it is important to respond to both fabric and host conges-
tion. We initially underestimated congestion at hosts (as have most
designs) but both forms matter across a range of latency-sensitive,
IOPS-intensive, and byte-intensive workloads. Delay is readily de-
composed for this purpose. Third, we must support a wide range of
traffic patterns including large-scale incast. This range leads us to
pace packets when there are more flows than the bandwidth-delay
product (BDP) of the path, while using a window at higher flow
rates for CPU efficiency.

This work does not raise any ethical issues.

2 MOTIVATION
The evolution of Swift was driven by trends in storage workloads,
host networking stacks, and datacenter switches.
Storage Workloads. Storage is the dominant workload for our
datacenter networks. It is the primary medium for communication
across jobs, and disaggregation means that storage access crosses
the network. Disk traffic is dominated by O(10) ms access latency
rather than network latency, so carrying disk traffic does not require
low-latency congestion control. But latency has become critical as
cluster-wide storage systems have evolved to faster media (Table 1).
Flash access latency is 100µs, making milliseconds of network la-
tency unacceptable, and NVMe is even more demanding [25]. Tight
network tail latency is a requirement because storage access touches
multiple devices, and the overall latency for any single storage op-
eration is dictated by the latency of the longest network operation.
And in-memory filesystems, e.g., Octopus [35], require multiple
round trips for transactions, which also stresses low fabric latency.
Moreover, high throughput is needed. Cluster storage systems op-
erate at petabyte scale. Demanding applications such as BigQuery
run a shuffle workload on top of an in-memory filesystem [11]. For
Swift, the need has been to continually tighten tail latency without
sacrificing throughput.
Host Networking Stacks. The implementation of congestion con-
trol has undergone a wholesale change in the datacenter. Traditional

NIC

Applicationcommand &
completion

queues

NIC queues

op scheduler

Delay computation

CWND computation

Op layer

op streamsop streams

Packet-level
Transport layer

flow mapper flowsflows
RTT

Pacing
component

Swift

CWND

Figure 1: Swift as a packet-level congestion-control in the context of the Pony-
Express architecture.

congestion control runs as part of the host operating system, e.g.,
Linux or Windows, and serves the general purpose use case. This
setting is limited by its APIs, e.g., sendmsg and setsockopt, and
is often expensive for innovation. Adding pacing in the kernel,
for example, takes 10% of machine CPU [43, 44]. Newer stacks
such as RDMA and NVMe are designed from the ground up for
low-latency storage operations. To avoid operating system over-
heads, they are typically implemented in OS bypass stacks such
as Snap [36] or offloaded to the NIC [6, 13]. Swift runs in Snap
(as described shortly) and lets us design congestion control on a
clean-slate with features such as NIC timestamps and fine-grained
pacing. Snap also facilitated fast iterations. Swift also inspired a
delay-based congestion control scheme to control the issue rate of
RDMA operations based on precise timestamp measurements in
the 1RMA [47] system. Additionally, addressing host congestion
has become critical to maintain low end-to-end queuing. Increasing
line-rates and IOPS-intensive workloads stress software/hardware
per-packet processing resources; CPU, DRAM bandwidth, and PCIe
bottlenecks build up queues in NICs and host stacks. For Swift,
delay is decomposed to alleviate both fabric and host congestion.
Datacenter Switches. Our network has several generations of
switches in the same fabric; heterogeneity is inevitable given ad-
vances in line rates from 10Gbps to 100Gbps and beyond. Tying
congestion control deeply to switch internals poses a larger main-
tenance burden. For example, DCTCP relies on switches to mark
packets with ECN when the queue size crosses a threshold. Select-
ing an appropriate threshold and maintaining the configurations as
line speeds and buffer sizes vary is challenging at scale.1 If we keep
the same threshold (in bytes), then a 10× increase in link speed
would mark packets 10× earlier in time even though the control
loop is not 10× faster. If we grow the threshold, we must consider
that absolute buffer size has increased with successive switch gen-
erations but is limited by chip area and has not kept pace with
line-rates. Tuning is made more difficult because different switches
have different ways of managing buffer, e.g., memory bank limita-
tions. For Swift, we have found it easier to evolve delay targets at
hosts as part of the march towards lower latency than to integrate
with signals from switches.

3 SWIFT DESIGN & IMPLEMENTATION
In this section, we articulate how we settled on Swift and evolved
the protocol over time. We avoided switch modifications to more
1The DCTCP authors provide a formula to compute marking thresholds [1] but echo
our experience that care is needed in production networks.

515

Swift: Delay is Simple and Effective for Congestion Control in the Datacenter

readily support an evolving and heterogeneous cluster environment.
We found existing end-host-based schemes such as DCTCP, D3 [54],
and D2TCP [52] to be insufficient because of their inability to handle
large scale incasts and congestion at hosts. Our observation was that
a simple scheme around delay measurements could be sufficient.
These high-level requirements guided the evolution of Swift:
(1) Provide low, tightly-bound network latency, near zero loss, and

high throughput while scaling to a large datacenter across a
range of workloads.

(2) Provide end-to-end congestion-control that manages conges-
tion not only in the network fabric but also in the NIC, and on
hosts, i.e., in software stacks. We call the latter endpoint (or
host) congestion in this paper.

(3) Be highly CPU-efficient so as to not compromise an otherwise
CPU-efficient OS bypass communication.

Latency, loss and throughput are traditional measures of conges-
tion control. Low network latency reduces the completion times
of short RPCs. Low loss is critical because loss adds significantly
to latency of higher-level application transfer units, e.g., RPCs, es-
pecially at the tail. We find two additional measures that are also
important in production—endpoint congestion and CPU efficiency.

The design we arrived at uses end-to-end RTT measurements
to modulate a congestion window in packets, with an Additive-
Increase Multiplicative-Decrease (AIMD) algorithm, with the goal
of maintaining the delay around a target delay. Swift decomposes
the end-to-end RTT into NIC-to-NIC (fabric) and endpoint delay
components to respond separately to congestion in the fabric versus
at hosts/NICs.

Swift is implemented in Pony Express, a networking stack provid-
ing custom reliable transport instantiated in Snap [36]. It uses NIC
as well as software timestamps for accurate RTT measurements. It
uses Pony Express for CPU-efficient operation and low latency, and
as an environment suited to features such as pacing. Figure 1 shows
the placement of Swift in Pony Express. Pony Express provides com-
mand and completion queue API: applications submit commands
to Pony Express, also known as "Ops" and receive completions. Ops
map to network flows, and Swift manages the transfer rate of each
flow. The overall algorithm is specified in Algorithm 1. We give
details below by component.

3.1 Using Delay to Signal Congestion

Delay is the primary congestion signal in Swift because it meets
all our requirements. TIMELY noted that RTT can be measured
precisely with modern hardware, and that it provides a multi-bit
congestion signal, i.e., it encodes the extent of congestion and not
only its presence. Swift further decomposes the end-to-end RTT to
separate fabric from host issues; it has made delay measurements
much more precise through a combination of timestamps in NIC
hardware and in polling-based transport like Pony Express. We
describe the delay components and how they are measured in Swift.
Component Delays of RTT

Figure 2(a) shows the components that make up an RTT, from
locally sending a data packet to receiving the corresponding ac-
knowledgement from a remote endpoint.
• Local NIC Tx Delay is the time the packet spends in the NIC

Tx queue before it is emitted on the wire. When the networking
stack uses a pull model [36], the host hands the packet to the
NIC when the NIC is ready to send it, so this delay is negligible.

Algorithm 1: Swift Reaction To Congestion
1 Parameters: ai: additive increment, β : multiplicative decrease

constant, max_md f : maximum multiplicative decrease factor
2 cwnd_prev ← cwnd

3 bool can_decrease ← ▷ Enforces MD once every RTT
(now − t_last_decrease ≥ rtt)

4 On Receiving ACK
5 retransmit_cnt ← 0
6 tarдet_delay ← TargetDelay() ▷ See S3.5
7 if delay < target_delay then ▷ Additive Increase (AI)
8 if cwnd ≥ 1 then
9 cwnd ← cwnd + ai

cwnd · num_acked
10 else
11 cwnd ← cwnd + ai · num_acked
12 else ▷ Multiplicative Decrease (MD)
13 if can_decrease then
14 cwnd ← max(1 − β · (delay−tarдet_delay

delay),
1 −max_md f) · cwnd

15 On Retransmit Timeout
16 retransmit_cnt ← retransmit_cnt + 1
17 if retransmit_cnt ≥ RETX_RESET_THRESHOLD then
18 cwnd ←min_cwnd
19 else
20 if can_decrease then
21 cwnd ← (1 −max_md f) · cwnd

22 On Fast Recovery
23 retransmit_cnt ← 0
24 if can_decrease then
25 cwnd ← (1 −max_md f) · cwnd
26 cwnd ← ▷ Enforce lower/upper bounds

clamp(min_cwnd, cwnd,max_cwnd)
27 if cwnd ≤ cwnd_prev then
28 t_last_decrease ← now

29 if cwnd < 1 then
30 pacinд_delay ← r t t

cwnd
31 else
32 pacinд_delay ← 0;

Output: cwnd , pacinд_delay

Note that the host delay in this situation is not considered part
of the packet layer; it is observed at higher layers.
• Forward Fabric Delay is the sum of the serialization, propaga-

tion and queuing delays for the data packet at switches between
the source and destination. It also includes the NIC serialization
delay.
• Remote NIC Rx Delay is the time the packet spends in the re-

mote NIC queue before it is picked by the remote stack. This
delay can be significant when the host is the bottleneck. For
example, in the context of Snap [36], this delay can rise quickly
when the packet processing capacity falls due to memory pres-
sure and CPU scheduling.

516

Kumar et al.

5. Remote NIC Tx Delay

3. Remote NIC Rx Delay

Traffic Roundabout

2. Forward Fabric Delay

Lo
ca

l E
nd

po
in

t

Tx

Rem
ote Endpoint

Tx

Rx

Switch Queue

Switch Queue

6. Reverse Fabric Delay

1. Local NIC Tx Delay

7. Local NIC Rx Delay

Rx

4. Rem
ote Processing D

elay

t1: t_sent

t2: t_remote_nic_rx

t4: t_ack_sent

t3: t_remote_host_rx

t5: t_local_nic_rx

t6: t_local_host_rx

DATA

Remote NIC
Rx Delay

Processing
Delay

Local NIC
Rx Delay

Remote
Queuing

ACK

(a) (b)
Figure 2: (a) Components of end-to-end RTT for a data packet and corresponding ACK packet. (b) Timestamps used to measure different delays (Hardware
and software timestamps are shown in blue and red, respectively).

• Remote Processing Delay is the time for the stack to process
the data packet and generate an ACK packet, including any
explicit ACK delays.
• Remote NIC Tx Delay is the time spent by the ACK packet in

the NIC Tx queue.
• Reverse Fabric Delay is the time taken by the ACK packet on

the reverse path. Note that the forward and reverse paths may
not be symmetric.
• Local NIC Rx Delay is the time spent by the ACK packet before

it is processed by the stack to mark the delivery of the data
packet.
The forward fabric delay is the primary indicator of network

congestion, while the remote NIC Rx delay is the primary indicator
of host congestion. Sender-based congestion control should not
react to reverse path congestion since it has no direct control over
it. If needed, ACKs can be prioritized by using a higher quality
of service (QoS) class. However, we find the reverse path delays
are well controlled in practice, since the reverse side traffic is also
controlled by Swift.
Measuring Delays

Swift uses multiple NIC and host timestamps to separate the
components of delay. Modern NICs widely support hardware times-
tamps that are accessible from host networking stacks, including
Pony Express and kernel TCP. We describe the implementation in
Snap [36]; details depend on the networking stack.

Figure 2(b) depicts the event time sequence. t1 is the time a data
packet is sent, as recorded by the stack. t2 is when the packet lands
on the remote NIC. It is available via the hardware timestamp that
the NIC marks on the descriptor. t3 is when the packet is processed
by the stack, thus t3 − t2 is the time that the packet spends in the
NIC queue. The key here is synchronizing the NIC clock (which
provides t2) and the host clock (which provides t3). We use a simple
linear extrapolation algorithm to translate the NIC timestamp to
the host clock (Appendix A provides further details). t4 is the time
the ACK is ready to be sent out by the stack, and so t4 − t3 gives us
the processing time.

We sum the NIC Rx delay and the processing time to obtain
remote-queuing, and reflect this delay to the sender via a header
on the ACK packet. The NIC Rx timestamp is appended locally to
the packet descriptor and is not sent on the wire. In our experience,
4 bytes are enough for microsecond-level precision. Details of the
packet format changes are in Appendix B. Finally, t5 and t6 are
the corresponding receive timestamps for the ACK at the original
sender. End-to-end RTT is t6 − t1.

3.2 Simple Target Delay Window Control
The core Swift algorithm is a simple AIMD controller based on
whether the measured delay exceeds a target delay. We found sim-
plicity to be a virtue as TIMELY evolved to Swift and removed
some complexity, e.g., by using the difference between the RTT and
target delay rather than the RTT gradient. Below we describe the
algorithm based on a fixed target delay, then elucidate the end-host
and fabric parts in §3.3, and dynamic scaling based on topology
and load in §3.5.

The controller is triggered on receiving ACK packets. Swift reacts
quickly to congestion by using instantaneous delay as opposed
to minimum or low-pass filtered delay. In addition, Swift does not
explicitly delay ACKs. Both choices mitigate staleness concerns in
using delay as a congestion-signal [60]. Lines 4–14 in Algorithm 1
provide Swift’s reaction on receiving an ACK; if the delay is less than
the tarдet , the cwnd (measured in packets) is increased by ai

cwnd
(ai = additive increment), such that the cumulative increase over an
RTT is equal to ai. Otherwise, the cwnd is decreased multiplicatively,
with the decrease depending on how far the delay is from the target,
i.e., we use multiple bits of the delay signal for precise control. The
multiplicative decrease is constrained to be once per RTT, so that
Swift does not react to the same congestion event multiple times.
We do this by checking against the time of the last cwnd decrease.
The initial value of cwnd has little effect in our setting because
Pony Express maintains long-lived flows.
3.3 Fabric vs. Endpoint Congestion
Many congestion control designs focus on the fabric as the net-
work, and ignore host issues. We learned over time that host issues
are important and need a different congestion response. To do so,
we split the RTT into fabric delay due to links and switches, and
end-host delay that happens in NIC and host networking stack.
First, Swift computes endpoint-delay as the sum of remote-queuing
(echoed in the ACK) and Local NIC Rx Delay (given by t6 − t5).2
Then, Swift computes fabric-delay as RTT minus endpoint-delay.

Swift then uses two congestion windows, fcwnd to track fabric
congestion, and ecwnd to track endpoint congestion. Both windows
follow Algorithm 1 with a different fabric-delay-target and endpoint-
delay-target. There is a slight difference in that we use Exponentially
Weighted Moving Average (EWMA) filtering for the endpoint delay,
given that endpoint delays are more noisy in our experience.

The effective congestion window is combined as min(fcwnd,
ecwnd).3 Note the similarity to how TCP uses the minimum of
cwnd and receiver advertised window, where advertised window
serves the role of ecwnd . In the context of Snap [36], delay is a
2We provide the reasoning behind including this delay in Appendix C.
3Both cwnds are updated together and a ceiling value is used as a guard for the
non-bottlenecked cwnd .

517

Swift: Delay is Simple and Effective for Congestion Control in the Datacenter

Pr
op

ag
at

io
n

D
el

ay

Q
ue

ui
ng

D
el

ay

Se
ria

liz
at

io
n

D
el

ay

Se
ria

liz
at

io
n

D
el

ay

Hop 1NIC

Pr
op

ag
at

io
n

D
el

ay

Q
ue

ui
ng

D
el

ay

Se
ria

liz
at

io
n

D
el

ay

Hop H

...

Reverse
Path

N Flows

Figure 3: Target delay encapsulates both fixed and variable parts and is dy-
namically scaled based on topology and load.

better measure of host congestion than advertised window. It is
directly tied to all bottlenecks on the host, including CPU, memory,
PCIe bandwidth, caching effects, thread scheduling, etc., whereas
advertised window captures memory allocation (and very indirectly
CPU bottlenecks). In addition, the advertised window is used for
flow-control, i.e., to prevent a flow from over-running a buffer,
and does not aim for fairness across flows when the host is the
bottleneck.

Separating fabric and host congestion in the design of Swift
had a huge impact in production, with the tail latency of most
applications improving by 2×, and none suffering a regression. We
give more production results in §4.
3.4 Large-Scale Incast
During deployment, we ran into applications that relied on ex-
tremely large incasts, with thousands of flows destined to a single
host simultaneously. In this scenario, when number of flows ex-
ceed the path BDP, even a congestion window of one is too high
to prevent overload. To handle such cases, we augmented Swift
to allow the congestion window to fall below one packet down to
a minimum of 0.001 packets. This case needs special handling of
the increment update (Lines 7–11 of Algorithm 1). To implement
a fractional congestion window, we translate it to an inter-packet
delay of RTT

cwnd (Lines 29–32 of Algorithm 1) that the sender uses to
pace packets into the network. For example, a cwnd of 0.5 results
in sending a packet after a delay of 2 × RTT . The pacing is imple-
mented using a Timing Wheel [43]. Results from production (§4)
show pacing is critical to maintain low latency and loss at scale.

While conventional wisdom is that always-on pacing is bene-
ficial in terms of smooth traffic and lower losses, we found that
pacing packets for moderate or higher flow rates did not provide
better performance than an ACK-clocked window. Moreover, pac-
ing packets is not CPU efficient compared to ACK clocking. Beyond
the CPU cost of pacing data packets, added CPU is consumed on
the receiver due to reduced opportunities for ACK coalescing, and
on the sender due to a corresponding increase in the number of
ACKs. TIMELY used rate control but did not suffer from these prob-
lems because it paced 64KB chunks, which allowed for efficient
use of CPU. But for a Snap transport that operates in MTU-sized
units, pacing is mostly not necessary for performance, nor is it
CPU-efficient. In Swift, we finesse this issue by normally using
ACK-clocked congestion window and shifting to pacing when the
cwnd falls below 1.
3.5 Scaling the Fabric Target Delay
So far, we have described Swift with a fixed target delay. Here, we
describe how to scale the target fabric delay (henceforth referred
to as target delay) to the latency of paths that are longer or heavily
loaded.

Target delay encapsulates both the fixed and the variable parts
of the fabric delay, as shown in Figure 3. The base portion of target

16 32 64 128 256 512 1k 2k 4k 8k

Number of Flows

0

25

50

75

100

�
eu

e
Le

ng
th

(p
kt

s)

log sqrt

linear

Measured queue length

Figure 4: Average queue buildup with randomized flow arrival and perfect
rate control grows as O (√N).

delay consists of delays incurred for a single hop network with a
small number of flows: propagation delay, serialization delay in NIC
and switch (which depends on link speed), queuing delay for a small
number of flows, measurement errors from software and hardware
timestamps, as well as any unaccounted delays in network, e.g.,
resulting from QoS scheduling. On top of this base, we scale target
delay based on topology and load.
Topology-based Scaling: While using a single target delay that
is high enough to cover propagation and serialization delays across
the datacenter diameter gives us good overall throughput, it comes
at the cost of building larger queues for traffic that takes shorter
paths, e.g., intra-top-of-rack (intra-ToR) network, plus some RTT
unfairness. Instead, we want to use smaller targets for flows with
shorter paths to improve performance.

Measuring the minimum path delay is not simple in the Internet,
as shown by prior work [12]. For datacenters, the topology is known
and network distance is bounded. Given this environment, we
translate the network path for a flow to a target delay by using a
fixed base delay plus a fixed per-hop delay. We measure the forward-
path hop count by subtracting the received IP TTL (Time-To-Live)
values from known starting TTL, and reflect it back in the ACK-
header. This design works with multi-path forwarding, though in
practice we find it sufficient to use a single path at a time per flow.
Flow-based Scaling: We also scale the target delay with the num-
ber of competing flows. The target must provide enough headroom
for Swift to fully utilize the bottleneck. We find that the queue size
and hence the target required to saturate the bottleneck link in-
creases with the number of competing flows. For intuition, consider
a link with N flows that are rate-limited to exactly their fair share
but have random start times. Then queuing happens only when
packets from different flows come together by chance. Figure 4
shows the simulation results—the average queue length grows as
O(√N). This behavior can be modeled as a bounded random walk
and the average queue size, like the distance from the starting
point, grows as O(√N). Results from buffer sizing work [5] that
show required buffer space for TCP reduces with number of flows
by O(√N) may seem contradictory but it is modeling different as-
pects. The buffer sizing work is modeling the variation in window
as governed by AIMD. Using Central Limit Theorem, Reference [5]
shows that the variation in total window is reduced by O(√N) for
large number of unsynchronized flows.4 In Swift, we model the
amount of queuing that would happen naturally due to random

4Another way to reason: given N flows, each flow’s window fluctuation is O (1
N ×

BDP); chance of fluctuations coinciding is O (√N). Thus, average fluctuation of total
window is O (

√
N
N) = O (1√

N
).

518

Kumar et al.

Parameter Description
base_tarдet base target delay
ℏ per hop scaling factor
f s_max_cwnd max cwnd for target scaling
f s_min_cwnd min cwnd for target scaling
f s_ranдe max scaling range

Table 2: Parameters for target delay scaling.

0.001 0.01 0.1 1 10 100

Congestion Window (#packets)

0
1
2
3
4
5
6
7
8

Ta
rg

et
D

el
ay

(n
or

m
al

iz
ed

)

5 B_<8=_2F=3

5 B_<0G_2F=3

10B4_C0A64C

#ℎ>?B × ℏ5 B_A0=64

Flow-based scaling Flow and hop-based scaling

Figure 5: Example fabric delay target curve vs congestion window.

chance of collision between flows but not because of bandwidth
overestimation, and factor it into the queuing headroom to avoid
overreaction.

Since the sender does not know the number of flows at the
bottleneck, we need another means to adjust the target. We rely
on the fact that cwnd is inversely proportional to the number of
flows when Swift has converged to its fair-share. So we adjust the
target in proportion to 1/

√
cwnd , i.e., the target delay grows as cwnd

becomes smaller. As well as lowering the queuing when there are
few flows, this method improves fairness: it speeds slow flows with
a larger target, and slows fast flows with a smaller target. We find
this convergence bias especially useful when flows have congestion
windows less than one.
Overall Scaling: Combining topology and flow scaling, and using
the notation of Table 2, we arrive at the formula for target delay:
t = base_tarдet + #hops×ℏ +max(0,min(α√

f cwnd
+β, f s_ranдe)),

where
α =

f s_ranдe
1√

f s_min_cwnd
− 1√

f s_max_cwnd

, β = − α√
f s_max_cwnd

.

Figure 5 provides an example to show the relationship between
target delay, cwnd , and flow scaling parameters. base_tarдet is the
minimum target delay required to provide 100% utilization in a one
hop network with a small number of flows. f s_ranдe specifies the
additional target on top of base that is progressively reduced over
the cwnd range [f s_min_cwnd , f s_max_cwnd]. ℏ is the per-hop
scaling factor. These three parameters determine the slope of the
scaling curve and the cwnd range to which it is applied.

A steeper curve improves fairness and convergence by making
it more likely that slower flows increment their rates. However, it
also increases queuing in the network. To precisely model queuing
due to random collisions, the slope of the curve is a function of
number of flows and link capacity. We approximate the ideal curve
by selecting a tolerable delay over base target, and a cwnd range
over which to apply scaling. Defining a scaling range lets us use a
steeper curve for smaller cwnd , representing the high congestion
regime.

We note that the interdependence of cwnd and target delay is
for the small cwnd regime. It does not pose a problem in practice

because the target delay and cwnd adjustments are opposite in
direction, e.g., when cwnd grows, the queuing delay increases which
reduces target delay, and vice versa. The result is to more quickly
equalize the queuing and target delay than with a static target,
which gives faster convergence and better fairness.

3.6 Loss Recovery and ACKs
We discuss the details of generating acknowledgments and recov-
ering lost packets because they impact delay-based congestion
control.
Loss Recovery Happily, we have needed to invest minimal effort
in loss recovery for good tail latency because Swift keeps packet
losses low. Like TCP, packet losses are detected in Swift with two
main mechanisms: selective acknowledgements (SACK) for fast
recovery, and a retransmission timer to ensure data delivery in
the absence of acknowledgments from the receiver. SACK is imple-
mented using a simple sequence number bitmap. When a packet
is detected as lost via a hole in the bitmap, it is retransmitted, and
the congestion window is reduced multiplicatively. In addition, a
retransmission timeout (RTO) is maintained on a per-flow basis
computed using exponentially weighted moving average over the
end-to-end RTT. To adapt quickly to potentially severe congestion,
the congestion window is reduced by the maximum multiplicative
factor on an RTO. We have not needed to draw on other mechanisms
well-known from TCP loss recovery, e.g., References [4, 10, 19, 37].
ACKs Swift does not explicitly delay ACKs to react more quickly
to congestion. Note that ACK coalescing will still occur if multiple
packets arrive together, e.g., they are processed in a batch by Snap.
We also take care not to delay ACKs in the case of bi-directional
traffic, as would happen if we piggyback the ACK on a reverse data
packet that is paced. Instead, we decouple data and ACK packets
for paced flows—an incoming data packet generates a pure ACK
sent immediately to unblock the remote end, while a reverse data
packet respects any pacing-delay that is imposed on it.

3.7 Coexistence via QoS
In a shared production deployment, there are multiple congestion
control algorithms. WAN flows operate with a different congestion
control algorithm than datacenter flows optimized for latency. Cus-
tomers configure cloud VMs with the congestion control of their
choice. And UDP-based traffic uses application-level rate control
logic. It is essential that Swift traffic be able to coexist with various
forms of congestion control without adverse competition for switch
buffers, otherwise its latency may be inflated and its throughput
reduced.

As a pragmatic solution, we leverage QoS features. Switches
have ∼10 QoS queues per port [32] that can share the buffer space
across ports based on usage. We reserve a subset of QoS queues
for Swift traffic and give them a share of the link capacity via
weighted-fair-queuing. By using larger scheduler weights for higher
priority traffic, we are able to handle tenants with different traffic
classes. While this simple arrangement does not completely isolate
Swift traffic, we show it provides enough separation for excellent
performance (§4.3).

4 TAKEAWAYS FROM PRODUCTION
We deployed Swift in production at Google over the course of four
years. It supports traffic at large scale from applications with a
range of needs including:

519

Swift: Delay is Simple and Effective for Congestion Control in the Datacenter

• HDD and SSD reads and writes that serve the storage needs of
many Google applications. While there are many small reads
and writes, this traffic is generally throughput-intensive (also
referred to as byte-intensive in this paper).
• An in-memory key-value store used by several Google applica-

tions, which is latency-sensitive.
• An in-memory filesystem used for BigQuery shuffle, which is

IOPS-intensive and can have a large degree of fan-in.
4.1 Measurement Methodology
Data reported in this section is taken fleet-wide, except where we
call out specific clusters, for a period of one week. This data covers
a very wide range of workloads, scale, and utilization. We draw our
conclusions from three types of data:
• Switch statistics tell us the link utilization and loss rates. We
compute them over 30-second intervals using per-port output-
packets and output-discards counters collected from production
switches. We do not include loss due to routing failures or packet
corruption.
• Host round-trip times. NIC-to-NIC probers with NIC hardware
timestamps give us fabric RTT data for both Swift and non-Swift
traffic. End-to-end packet RTT, including host and fabric parts, is
measured in Swift.
• Application metrics, where available, highlight the impact of
Swift on applications.

Our main point of comparison for Swift is DCTCP-style con-
gestion control. While there are many other proposed congestion
control protocols for the datacenter, they are more complex and
not readily available at fleetwide scale. In contrast, DCTCP is a
well-known reference point, for which we report on a Google ver-
sion called GCN that has a faster response to congestion by scaling
its multiplicative decrease based on the current ECN mark rate
rather than an EWMA, and disabling delayed ACKs when receiving
ECN-marked data. GCN has also been thoroughly tuned at scale.
Thus, we believe GCN serves as a more stringent comparison for
Swift than DCTCP. The GCN results in this section are with our
kernel production deployment; we also provide results for GCN
instantiated in PonyExpress [36] for comparison in §5.3.

For confidentiality purposes, we normalize the absolute loss, la-
tency and throughput numbers from our production deployments;
in §5 we report absolute numbers for Swift performance from
testbed experiments.
4.2 Performance At Scale
We report combinations of latency/loss and throughput/utilization
because it is essential to deliver on all of them at once—it is easy but
not useful to optimize one metric at the expense of another. A key
difficulty is how to perform a comparative fleetwide evaluation as
we cannot easily shift between these protocols to provide clean A/B
data at fleet scale. Rather, both Swift and GCN must run together
in various mixes in the same cluster. We report Swift/GCN loss
rates versus total port utilization as well as individual Swift/GCN
utilizations (which we call queue utilizations) to show that Swift
delivers excellent performance.
Takeaway: Swift achieves low loss even at line-rate

One of the biggest improvements as we moved traffic to Swift
was the reduction in packet loss. We compare Swift and GCN loss
rates versus the combined link utilization of Swift and GCN. The
loss rate is the lost packets divided by the sent packets for a type
of traffic (Swift or GCN). The combined link utilization is the sum

0 10 20 30 40 50 60 70 80 90 100
Port Utilization (%)

0.00

0.25

0.50

0.75

1.00

Lo
ss

R
at

e
(n

or
m

al
iz

ed
)

Average

GCN
Swi�

0 10 20 30 40 50 60 70 80 90 100
Port Utilization (%)

0.00

0.25

0.50

0.75

1.00

Lo
ss

R
at

e
(n

or
m

al
iz

ed
)

99.9th percentile

GCN
Swi�

0 10 20 30 40 50 60 70 80 90 100
Port Utilization (%)

10−5

10−4

10−3

10−2

10−1

100

Lo
ss

R
at

e
(n

or
m

al
iz

ed
)

Average

GCN
Swi�

0 10 20 30 40 50 60 70 80 90 100
Port Utilization (%)

10−5

10−4

10−3

10−2

10−1

100

Lo
ss

R
at

e
(n

or
m

al
iz

ed
)

99.9th percentile

GCN
Swi�

Figure 6: Edge (ToR to host) links: Average and 99.9p Swift/GCN loss rate (lin-
ear and log scale) vs. combined utilization, bucketed at 10% intervals. Loss rate
is normalized to highest GCN loss rate. The near-vertical line in the log-scale
plot is due to extremely small relative loss-rate.

0 10 20 30 40 50 60 70 80 90 100
Port Utilization (%)

0.00

0.25

0.50

0.75

1.00
Lo

ss
R

at
e

(n
or

m
al

iz
ed

)
Average

GCN
Swi�

0 10 20 30 40 50 60 70 80 90 100
Port Utilization (%)

0.00

0.25

0.50

0.75

1.00

Lo
ss

R
at

e
(n

or
m

al
iz

ed
)

99.9th percentile

GCN
Swi�

0 10 20 30 40 50 60 70 80 90 100
Port Utilization (%)

10−9

10−6

10−3

100

Lo
ss

R
at

e
(n

or
m

al
iz

ed
)

Average

GCN
Swi�

0 10 20 30 40 50 60 70 80 90 100
Port Utilization (%)

10−9

10−6

10−3

100

Lo
ss

R
at

e
(n

or
m

al
iz

ed
)

99.9th percentile

GCN
Swi�

Figure 7: Fabric links: Average and 99.9p Swift/GCN loss rate Swift/GCN loss
rate (linear and log scale) vs. combined utilization, bucketed at 10% intervals.

of Swift/GCN bits on the wire divided by the link capacity. We use
switch counters for both metrics. We normalize the highest GCN
loss rate in each plot to 1.0.

Figure 6 shows links at the edge, i.e., ToR to host. We see in the
log-scale plot that Swift provides 2+ orders of magnitude lower
average and 99.9th-percentile loss rates than GCN across a range of
combined utilization. While the data is normalized due to confiden-
tiality, we note that GCN losses have been an operational challenge,
even at lower utilization levels. Swift continues to provide very low
average and tight tail loss for heavily utilized (>90%) links at the
edge, while GCN does not.

Figure 7 shows the same plot for fabric links in the core of the
datacenter. We see the same trends. Note that not all loss in produc-
tion is due to congestion control, e.g., link flaps cause loss before
the switch converges. This impact is evident at high utilization in
the fabric, especially for 99.9p loss, where there is a slight uptick in
Swift loss rate.

520

Kumar et al.

0 10 20 30 40 50 60 70 80 90 100
�eue Utilization (%)

0.00

0.25

0.50

0.75

1.00

Lo
ss

R
at

e
(n

or
m

al
iz

ed
)

Average

GCN
Swi�

0 10 20 30 40 50 60 70 80 90 100
�eue Utilization (%)

0.00

0.25

0.50

0.75

1.00

Lo
ss

R
at

e
(n

or
m

al
iz

ed
)

99.9th percentile

GCN
Swi�

Figure 8: Average and 99.9th percentile loss rate vs. queue utilization.

0x 2x 4x 6x 8x 10x

Cluster Throughput (normalized)

0.00

0.25

0.50

0.75

1.00

Lo
ss

R
at

e
(n

or
m

al
iz

ed
)

Average

GCN
Swi�

0x 2x 4x 6x 8x 10x

Cluster Throughput (normalized)

0.00

0.25

0.50

0.75

1.00

Lo
ss

R
at

e
(n

or
m

al
iz

ed
)

99.9th percentile

GCN
Swi�

Figure 9: Edge (ToR to host) average and 99.9p loss rate vs. total Swift/GCN
throughput in the cluster.

40G 50G 100G

Port speed (bps)

0.00

0.25

0.50

0.75

1.00

Lo
ss

R
at

e
(n

or
m

al
iz

ed
)

0.38

0.10

1.00

2e-3 0.02 1e-7

Average

GCN
Swi�

40G 50G 100G

Port speed (bps)

0.00

0.25

0.50

0.75

1.00

Lo
ss

R
at

e
(n

or
m

al
iz

ed
)

0.36 0.33

1.00

7e-4 0.01 2e-9

99.9th percentile

GCN
Swi�

Figure 10: Average and 99.9p loss rate of highly-utilized (>90%) links in each
switch group.

As a check, Figure 8 shows Swift/GCN loss versus the Swift/GCN
queue utilization.5 and see the same behavior. This gives us con-
fidence that low Swift loss rates are sustained even when all the
traffic on the link is from Swift.

We plot aggregate cluster throughput versus the loss rate in
Figure 9. We pick 25 clusters at Google and plot the loss rate for
Swift/GCN separately against the total Swift/GCN throughput in
the cluster. We report edge links only for brevity. We see that Swift
consistently delivers low loss even at extreme tails at scale, while
GCN is much more variable. In our experience, the low loss rates of
Swift are a direct outcome of its prompt reaction to congestion as
detected by its target delay, as well as scaling to large incasts. Given
the extremely small loss rate both at the edge and in the fabric, the
end-to-end retransmission rate for Swift is also very low, which is
consistent with our choice not to invest heavily in loss recovery.

Swift’s performance improvements hold for a range of link
speeds. We show results for commodity NIC link speeds from 40
to 100Gbps. Figure 10 compares the average and 99.9p loss rate for
edge (ToR to host) links at high utilization (>90%). At near line-rate
utilization, even the 99.9th-p loss rate for Swift is much smaller
than GCN.
Takeaway: Swift achieves low latency near the target

We now turn to latency. Figure 11 shows NIC-to-NIC round trip
time (or fabric RTT) across our datacenters as measured by NIC
5Note that there is a spike in the [80-90%] loss rate bucket for GCN. We verified this
spike accurately measures our production traffic, and we are investigating plausible
causes.

0x 5x 10x 15x 20x 25x

Fabric RTT (normalized)

0.00

0.25

0.50

0.75

1.00

C
D

F

Base target delay GCN
Swi�

Figure 11: Fabric RTT: Swift controls fabric delay more tightly than GCN.

0x 2x 4x 6x 8x 10x

Cluster Throughput (normalized)

0x

2x

4x

6x

8x

10x

R
T

T
(n

or
m

al
iz

ed
)

Base target delay

Average

GCN
Swi�

0x 2x 4x 6x 8x 10x

Cluster Throughput (normalized)

0x

20x

40x

60x

80x

100x

120x

R
T

T
(n

or
m

al
iz

ed
)

99.9th percentile

GCN
Swi�

Figure 12: Cluster Swift/GCN Throughput vs. Average RTT. The dashed line
is the base target delay (normalized to 1).

timestamps. We can see that Swift is able to maintain the average
fabric round-trip around the configured target delay, and controls
tail latency much better than non-delay based GCN. We normalize
the numbers w.r.t the base target delay.

In Figure 12, we show that Swift achieves average RTTs close to
target delay at large scale and across our clusters. The average RTT
roughly matches the base target delay used in our deployments. This
behavior has proven to be extremely useful as we tuned the target
delay over the course of our full deployment—early Swift deploy-
ments used 2× the base target delay than our current configuration.
This change was done incrementally and carefully, ensuring we did
not cause regression in application performance by decreasing the
bandwidth applications get as we navigate the latency-throughput
tradeoff. §5.1 details the experiments that guided us in setting the
base target delay in production.

We note that in some clusters the average RTT is above the base
target, though it stays below the upper bound of the target with
topology and flow scaling. We spot-checked a few clusters and
found that the average is drivenup by the tail RTT for two reasons.
First, external factors impact the delay observed for Swift. The main
factor is a large amount of traffic on high QoS classes outside of
Swift control. These factors are inevitable in a large, heterogeneous,
shared infrastructure. Second, the tail RTT is also driven up by
heavy incast workloads that trigger flow-based scaling of target
delay as described in §3.5.
Thus, Swift achieves near line-rate throughput while main-
taining its promise of low loss and low latency.

Swift outperforms GCN for three main reasons. First, Swift
rapidly reduces its cwnd to below one under extreme congestion,
when number of flows exceed the network bandwidth-delay prod-
uct. Second, Swift alleviates congestion at end-hosts in addition
to congestion in the fabric. Finally, Swift predictably bounds end-
to-end delay regardless of intermediate link rates and buffer sizes,
which is a difficult goal to attain with GCN thresholds.
4.3 Use of Shared Infrastructure
Recall that we share network links with non-Swift traffic. To do
so we separate traffic using QoS classes that share link bandwidth

521

Swift: Delay is Simple and Effective for Congestion Control in the Datacenter

0 10 20 30 40 50 60 70 80 90 100
ToR-to-Host Link Utilization (%)

10−4

10−2

100

Lo
ss

R
at

e
(n

or
m

al
iz

ed
)

GCN strict priority
Swi� lowest priority

Figure 13: Average loss rate vs. port utilization for GCN traffic at strict sched-
uling priority and Swift at lower schedulingweight for ToR-to-host links. The
highest GCN loss rate is normalized to 1.0.

0x 1x 2x 3x 4x 5x 6x

Time (normalized)

0.00

0.25

0.50

0.75

1.00

C
D

F

RTT
NIC delay

0x 1x 2x 3x 4x 5x 6x

Time (normalized)

0.00

0.25

0.50

0.75

1.00

C
D

F

RTT
NIC delay

Figure 14: CDF of end-to-end packet RTT and NIC-Rx-queuing delay for the
throughput-intensive cluster (left) and IOPS-intensive cluster (right).

using weighted-fair queuing. In our experience, this arrangement
lets Swift achieve low latency even in cases when a good portion
of the traffic is controlled by loss or via GCN. We see in Figure 11
that Swift latency is substantially smaller than the GCN latencies
when both queues have the same scheduling priority. Similarly, the
cluster-scale measurements in Figure 12 show an order of magni-
tude lower latency for Swift than GCN.

To stress the isolation mechanism, we compare the packet loss
versus port utilization for unequal scheduling priority: GCN run-
ning with the advantage of strict priority scheduling and Swift
running at its lowest weight. Figure 13 shows that Swift controls
the queueing much better than GCN even though it has less pre-
ferred access to link bandwidth.

4.4 Fabric and Host Congestion

The response of Swift to host as well as fabric congestion has been
key to its success in production. In a shared environment, we often
have a mix of IOPS-intensive applications that stress hosts, and
throughput-intensive applications that stress the fabric. While most
cluster congestion is in the fabric, host congestion is not rare, and
if we did not respond to it separately then IOPS-intensive flows
could unfairly degrade co-located throughput-intensive flows.

We choose two clusters to show how the fabric and host both
contribute to end-to-end packet RTT. One cluster is dominated by
IOPS-intensive tasks that are end-host queuing dominated, while
the other carries predominantly large storage RPCs, which are
typically network queuing dominated. For each cluster, we split the
end-to-end packet RTT as measured in Swift (t6 - t1 in Figure 2) to
obtain fabric and host components. We show these components for
the two clusters in Figures 14. There is a clear distinction. The host
delays are small and tight for the throughput-intensive cluster, but
can contribute as much as the fabric delays in the IOPS-intensive
cluster.

Splitting the RTT into fabric and host components has also been
invaluable for debugging. When a network problem is reported
in production, the first step is typically to determine whether the
culprit is the fabric or the host. By looking at log data for fabric

0 4 8 12 16 20 24 28

Time (day)

0x

1x

2x

3x

4x

5x

La
te

nc
y

(n
or

m
al

iz
ed

)

Min target
Max target

Figure 15: Small Op latency in an
in-memory filesystem.

50th-p 99th-p 99.9th-p

Percentiles

0x

2x

4x

6x

8x

10x

La
te

nc
y

(n
or

m
al

iz
ed

)

1.0x

3.4x

9.8x

1.0x
1.7x

2.4x

GCN
Swi�

Figure 16: Op latency in an SSD
storage system.

versus endpoint congestion in aggregate also tells us whether a
cluster is congested mostly by the fabric or end host engines.
4.5 Application Performance
It is important that Swift support IOPS-intensive and throughput-
intensive applications, latency sensitive workloads with short Ops,
and allow them to run well together; coexistence facilitates service
deployment in a shared network environment.
In-memory BigQuery Shuffle. Swift supports a disaggregated,
in-memory filesystem for BigQuery shuffle [11] built atop Snap [36].
What ultimately matters to a memory-based file system is how
quickly the workload completes, as measured by the IOPS, and the
completion time of small Ops. Swift’s ability to simultaneously con-
trol network delays and host congestion at scale is thus invaluable
for this application. Figure 15 shows that the Op completion time
closely follows the Swift’s target delay.6 The separate treatment of
fabric and host congestion in Swift was key in enabling this applica-
tion to meet its access latency SLOs in all clusters. In addition, the
team informed us that the ability to keep network latencies small
provided meaningful backpressure to them. They recently rolled
out a change to handle application-level queuing better, which im-
proved the tail-latency by 7×; a change which would not have been
possible with GCN.
Storage. Parts of Storage traffic are also served over Swift, with
throughput as the primary metric of goodness. We provide results
from a load test provided to us by the SSD-storage team that does
16kB reads. Swift achieves 4× lower 99.9th-p application latency
vs. GCN as shown in Figure 16. Additionally, Swift achieves ∼7%
higher IOPS with a 100% success rate in Op-completions, while the
losses in GCN resulted in 1.7% of its Ops failing due to deadlines
being exceeded.
4.6 Production Experience
We briefly summarize production experiences that may be of inter-
est.

Swift’s ability to operate at near line-rate with near zero loss
has caused confusion at times, since other teams are not used to
this level of performance at scale. On two occasions, bugs were
incorrectly filed for monitoring failures because highly-utilized
links reported zero loss. Both cases were quickly attributed to Swift;
the use of QoS classes separation made this attribution easy.

Swift’s extremely low delays has also met with skepticism that
it may be unnecessarily sacrificing throughput, thereby reducing
application performance. It is relatively easy to measure how well
congestion-control is mitigating congestion, but it is much harder
to measure how well it is utilizing available bandwidth given that
6High IOPS is not shown here; Reference [36] shows that in some intervals a single
Snap instance is serving upwards of 5M IOPS.

522

Kumar et al.

0 10 20 30 40 50 60 70 80
Target Delay (µs)

0

30

60

90

120

150

A
ch

ie
ve

d
R

T
T

(µ
s)

Throughput
99th-p RTT
Average RTT
Target delay

0

10

20

30

40

50

Th
ro

ug
hp

ut
(G

bp
s)

Figure 17:T1: Achieved RTT and throughput vs. target delay, 100-flow incast.

traffic may be application-limited or bottlenecked at end-hosts. To
address this concern we rolled out experimental and more aggres-
sive versions of Swift to subsets of the fleet. These versions priori-
tized throughput at the cost of increased queuing, including raising
the target delay, disabling pacing and cwnd < 1 mode, raising the
window floor and shortening timeouts. We observed increased RTT
and loss, but with no increase in throughput or improvement in
application performance. This result corroborates that Swift is not
throttling traffic to keep latency and loss low.

To see that the Swift implementation is efficient, we checked its
CPU usage in a diverse, heavy workload. It accounted for ∼2.6%
of Pony Express CPU. Of this, 1.4% is for ACK-processing (which
includes code not specific to Swift) and 0.31% is spent to support
timestamping and delay measurement.

We also found it simple to tune Swift’s target delay in production,
in contrast with challenges in tuning ECN thresholds. ECN thresh-
olds requires switch configuration updates, which is an ongoing
task due to evolving line-rates and topologies, and complicated by
heterogeneity, e.g., switches with a mix of line rates. In comparison,
target delay is controlled at the hosts and has a clear end-to-end
interpretation.

5 EXPERIMENTAL RESULTS
We present results from controlled experiments to evaluate the
mechanisms in Swift. Our experiments are from two testbeds with
benchmarking data (and no production traffic) running on them:
• T1 has 60 machines with 50Gbps NICs. We use it for incast

scenarios and for experiments relating to fairness, target delay
scaling and fabric vs. endpoint congestion.
• T2 is a larger testbed with ∼500 machines and 100Gbps NICs.

We use it for larger experiments with all-to-all traffic patterns.
5.1 Effect of Target Delay
Target delay is the key control parameter in Swift; we report on
how it affects performance. First, we look at how well the Swift
protocol can match measured RTT to the specified base target delay.
In T1, we set up 10 sender machines with 10 flows per sender, each
pushing 64kB write RMA operations to a single receiver machine as
quickly as possible. We vary the base target delay from 15µs to 70µs.
We disable flow and topology scaling (§3.5) for this experiment
to highlight the impact of base target delay. Figure 17 plots the
achieved RTT. We see it closely tracks the configured base target
delay.

Next, we look at how target delay affects throughput. The base
delay must at a minimum cover the propagation and NIC/switch
serialization delays, along with measurement inaccuracies. Beyond
this minimum, a higher target allows for more queuing. We want
the target delay to be low to reduce latency but high enough to maxi-
mize network throughput. Figure 17 also shows how the throughput
varies with the target delay. Initially the target is too low and Swift

0 25 50 75 100
O�ered Load (Gbps)

0

10

20

30

40

A
ch

ie
ve

d
R

T
T

(µ
s) 50th-p RTT

99.9th-p RTT
Throughput

0

25

50

75

100

Th
ro

ug
hp

ut
(G

bp
s)

Figure 18: T2: Achieved RTT and throughput vs. per-machine offered load.
Total load varies from 500Gbps to ∼50Tbps.

Metric Swift w/o cwnd < 1 Swift

Throughput 8.7Gbps 49.5Gbps
Loss rate 28.7% 0.0003%
Average RTT 2027.4µs 110.2µs

Table 3: T1: Throughput, loss rate and average RTT for 5000-to-1 incast with
and without cwnd < 1 support.

1 kB op (endpoint-congested) 64 kB op (fabric-congested)
0

25

50

75

100

125

C
on

ge
st

w
in

do
w

(p
kt

s)

84.12

1st-p
fcwnd

121.24

50th-p
fcwnd

0.75

1st-p
ecwnd

2.19

50th-p
ecwnd

0.90

1st-p
fcwnd

1.91

50th-p
fcwnd

70.40

1st-p
ecwnd

120.55

50th-p
ecwnd

Figure 19:T1: Fabric (f cwnd) and Endpoint (ecwnd) congestion windows for
a 100-to-1 incast with 1kB and 64kB writes.

throttles throughput. After a narrow transition region, through-
put remains saturated above a target of ~25µs. This clean behavior
makes it easy to find a good target in practice. In our initial deploy-
ments, we used a liberal target to first ensure throughput. We then
trimmed it to achieve lower latency, while ensuring no reduction
in throughput.

Note that needing a 25µs target in this experiment is not a lim-
itation of Swift but of the networking stack. Appendix D shows
an experiment (from a prototype that reduces host CPU interfer-
ence) where we lowered the target delay to 15µs and still sustained
line-rate throughput of 100Gbps.

5.2 Throughput/Latency Curves
Given a target delay, we sweep the offered load to characterize
the operating points of throughput vs. latency. To do this we use
T2 with a uniform random traffic pattern: each client selects one
machine from the remote racks at random for a 64kB write RMA
operation. We set the target delay to 25µs. We vary the offered
load by varying the interval over which we issue operations, and
measure the fabric RTT with NIC timestamps.

We see in Figure 18 that throughput increases with little rise in
RTT until we exceed 80% of the line-rate. Even then, the rise of
median RTT is modest and the tail RTT diverges slowly from the
median all the way through full load. At a load close to 100%, Swift
is able to maintain the 99.9th-p RTT to be <50µs at an aggregate
load close to 50Tbps. We note that the tail RTT is at most 3× higher
than the baseline unloaded RTT.

5.3 Large-scale Incast
Swift supports cwnd < 1 with pacing to handle large-scale incast,
which is an important datacenter workload. InT1, we start 100 flows

523

Swift: Delay is Simple and Effective for Congestion Control in the Datacenter

0 1 2 3 4 5 6 7
Time (s)

0
10
20
30
40
50
60

Th
ro

ug
hp

ut
(G

bp
s)

Flow 1
Flow 2
Flow 3
Flow 4

Figure 20: T1: Throughput of four
flows shows fairness achieved by
Swift.

0 10 20
Time (s)

0

10

20

30

40

Th
ro

ug
hp

ut
(M

bp
s) Swi� w/o FBS

0 10 20
Time (s)

Swi� with FBS

0 5 10 15 20 25 30
Throughput (Mbps)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F J = 0.91

J = 0.78

with FBS
w/o FBS

Figure 21: T1: Throughput with and without flow-based scaling (FBS) for
a 5000-to-1 incast. Jain’s fairness index (J) shown is measured amongst
all 5000 flows using a snapshot of flow rates.

Without TBS With TBS

0

10

20

30

40

50

Th
ro

ug
hp

ut
(G

bp
s)

28.89
24.88

20.63
24.66

Flow 1 Flow 2

Figure 22:T1: Throughput of two flows
with different path lengths, with and
without topology-base scaling (TBS).

from each of 50 machines to a single destination machine, repre-
senting a 5000-to-1 incast. We measure the achieved throughput,
loss rate and average RTT for runs with and without the support
for cwnd < 1.

We see in Table 3 that Swift achieves line-rate throughput with
low latency and almost zero loss—excellent performance for a 5000-
to-1 incast. Conversely, without support for cwnd < 1 the protocol
degrades to high latency and loss that drives down throughput. In
comparison, GCN running in Pony Express achieves a 5.1% loss-rate
and 8.67× average RTT even for a smaller scale 1000-to-1 incast.
5.4 Endpoint Congestion
As discussed before, endpoint congestion has become increasingly
important with rising link rates and advent of IOPS-intensive appli-
cations. To show how Swift differentiates and handles both fabric
and endpoint congestion, we use 20 machines inT1 each with 5 flows
incast to a single destination machine. We use 1kB writes for an
IOPS-intensive workload and 64kB writes for a byte-intensive work-
load. We plot the fabric and endpoint congestion windows, f cwnd
and ecwnd , showing the median and tail values in Figure 19. For
the tail, we use the 1st-percentile since lower congestion windows
represent smaller sending rates and, hence, larger RPC latencies.
We see a clear distinction as the workload shifts: the IOPS-intensive
case is limited by the endpoint window, while the byte-intensive
case is limited by the fabric window.

Decomposing the end-to-end RTT into fabric and endpoint com-
ponents lets Swift to craft different responses to congestion at
network and hosts. To show this strategy has a performance ben-
efit, we compare Swift to a version (Swift-v0) that uses a single
target for end-to-end delay. We setup two concurrent incasts, one
for the fabric and one for endpoint. Three machines in T1, each
with 5 flows, send traffic to another receiver machine in T1. Two
of the three senders perform large (64kB) writes to create fabric
congestion, and the remaining one performs small (64B) writes to
stress the endpoint. We show the results in Table 4. We observe
that Swift (fabric base target of 50µs and engine target of 100µs)
achieves throughput close to line rate. Swift-v0 with an end-to-end
target of 100µs achieves much lower throughput. This happens be-
cause the machines performing large writes inappropriately reduce
their congestion windows due to congestion at the receiver. We can
increase the target for Swift-v0 to increase throughput, but it comes
at the cost of increased RTT. Swift-v0 with 200µs target achieves
line-rate throughput but observes higher average and 99th-p RTT.
5.5 Flow Fairness
Flow and topology scaling help Swift to achieve a fair allocation
of bandwidth across flows, regardless of whether the flows have
different path lengths.

Configuration Throughput Average RTT 99th-p RTT

Swift 48.7Gbps 129.2µs 175.1µs
Swift-v0, 100µs target 41.6Gbps 118.3µs 154.4µs
Swift-v0, 150µs target 44.9Gbps 157.6µs 203.8µs
Swift-v0, 200µs target 49.5Gbps 184.9µs 252.7µs

Table 4:T1: Throughput, average and tail RTT for Swift and Swift-v0 that uses
different target delays without decomposing fabric and endpoint congestion.

Flows with same path lengths: First, we show how Swift con-
verges to fair-share as flows arrive and depart. In Figure 20, we
start with a single flow between a pair of machines. Keeping the
destination machine the same, we incrementally add one more flow
from a different source machine and then start tearing down the
flows one by one. We see the flow allocations are tight and fair.

While fairness across a few flows is essential, fairness across
thousands of flows is imperative at scale. For this, we use 50 ma-
chines in T1, each with 100 flows sending to a single destination
machine for a total of 5000 flows competing for the same bottleneck
link. We plot the throughput over time, CDF of flow rates, and Jain’s
fairness index [26] in Figure 21. We randomly sample 50 flows to
keep the throughput plot legible, but the CDF and Jain’s fairness
index is measured across all 5000 flows. Even though the per-flow
fair-share rate is only 10Mbps on a 50Gbps link, Swift achieves
good fairness with a Jain’s fairness index of 0.91. The impact of
flow-based scaling is evident, as it tightens the throughput range
for an extremely demanding workload.
Flowswith different path lengths (RTTFairness): Swift scales
the target delay for a flow based on network path length. This
not only reduces latency for shorter paths, but provides fairness
irrespective of the base RTT for a flow. To show how well this
mechanism works, we use two flows destined to the same machine,
one sent from the same rack and the other sent from a remote
rack. We plot the throughput of each flow without and then with
topology-based scaling. The results in Figure 22 show a marked
improvement to fair throughput levels.

6 RELATEDWORK

Swift is inspired by a large body of work for datacenter congestion
control (CC) summarized in Table 5. We summarize the work below.

ECN-based: DCTCP [1], a trailblazer for datacenter CC and the
main comparison point for Swift, uses ECN for rate control. Hull [2]
uses phantom queues, and D2TCP [52] is a deadline-aware protocol
that also uses ECN. When number of flows exceed network BDP,

524

Kumar et al.

Congestion Control Category Simplicity/Deployability NIC/Endhost
Support

Support in Switches Robust to Traffic
Patterns

Congestion
Handled

ECN based: DCTCP, D2TCP,
HULL

Complex ECN
Tuning/Deployment

Not Required ECN,
HULL Phantom-Q

Incast Issues Fabric Only

Explicit Feedback: XCP, RCP,
DCQCN, HPCC, D3

Complex Scheme/Deployment Required for HPCC,
DCQCN

Required for XCP,
RCP, D3, HPCC

Incast Issues
(not HPCC)

Fabric Only

Receiver/Credit Based: Homa,
NDP, pHost, ExpressPass

Not Universally Deployable Not Required Needed for
NDP, ExpressPass

Work Well ToR Downlink
not ExpressPass,
NDP

Packet Scheduling: pFabric,
QJump, PDQ, Karuna, FastPass

Not Deployable As Is Not Required Needed for PDQ,
pFabric

Incast Issues,
Specificity

Fabric Only

Swift Simple, Wide Deployment at
Scale

NIC TimeStamps None Works Well Fabric and Endhost

Table 5: The focal point of Swift is simplicity and ease of deployment while providing excellent end-to-end performance.

ECN-based schemes cannot match sending rate to bottleneck band-
width. In addition to not handling congestion at hosts, tuning ECN
thresholds in heterogeneous networks is prone to bugs.
Explicit Network Feedback including INT: XCP [27], RCP [17],
and D3 [54] rely on switches to feedback rates to end-hosts. DC-
QCN [59] relies on ECN and combines elements of DCTCP and
QCN [48] to control congestion. HPCC [34] relies on in-network
telemetry (INT) to obtain precise load information and for rate
control. Deployability of these schemes is a challenge, especially
in heterogeneous datacenters, as they require coordinated switch,
NIC, and end-host support. Swift uses an intuitive delay framework
that does not need switch support, though we note that it can easily
incorporate INT as it becomes more widely available. In particular,
INT can measure per-hop sojourn times to provide a more accurate
breakdown of delay.
Credit-based: pHost [21], NDP [23], Homa [39] and Express-
Pass [15], rely on the receiver end-host issuing credit packets. While
they show tremendous improvement in reducing flow completion
time (FCT), Homa and pHost assume that congestion is at ToR
downlinks. In practice, congestion can happen in the fabric which
can be over-subscribed [46]. Additionally, ExpressPass and NDP
require switch modifications. Swift handles end-to-end congestion
without requiring new support. Schemes like Homa can be layered
atop Swift to issue grants based on cwnd .
CongestionControl via Packet Scheduling: pFabric [3] achieves
near-optimal FCT through the usage of QoS queues. However, this
framework does not support multi-tenant environments in which a
large RPC for one tenant may be of higher priority than a small RPC
for another tenant. QJUMP [22] requires priorities to be specified
manually on a per-application basis. Karuna [14] requires a global
calculation. PDQ [24] requires switches to maintain per-flow state.
FastPass [42] places scheduling logic in a central scheduler.
Delay-based Schemes: Swift builds upon TIMELY [38] and DX[33],
which championed the use of one-way queuing delay as a signal
for congestion control. Swift advances over TIMELY [38] include:
decoupling fabric and host congestion; using a simple target end-
to-end delay instead of RTT gradients; scaling the target based on
load and topology; handling extreme incast; and measuring RTT
precisely even in the presence of ACK coalescing. In retrospect, we
appreciate how aspects of Swift’s design have addressed challenges
in using delay as a signal that were called out by Zhu et al. [60] (as
detailed in Appendix E).

7 CONCLUSION AND FUTURE DIRECTIONS
Congestion control has increasingly adopted complex constructs to
generalize to a range of applications and workloads. These efforts
often require coordinated changes across switches, hosts, central-
ized entities and applications, limiting adoption and, paradoxically,
generality. In this paper, we report on our multi-year experience
with congestion control in production at Google. After some false
starts, we realized that simplicity remains a virtue when choosing
congestion signals. We settled on delay as the simplest actionable
feedback. Very low base latency in the datacenter provides the op-
portunity to quickly react to both network and end host dynamics.
However, doing so requires high fidelity measurement of delay and
decomposition of such measures into meaningful constituent com-
ponents. Both requirements have historically been hard to achieve
though it is worth noting that most earlier attempts focused on
wide-area deployments. By leveraging NIC hardware timestamps
and rapid reaction to congestion in the protocol stack, we show
that delay can be both simple to use and extremely effective. Swift
achieves ∼30us tail latency while maintaining near 100% utilization.

While we feel we are tantalizingly close, we see multiple opportu-
nities to improve on Swift. We believe it is competitive with the best
centralized or in-network credit-based/explicit feedback schemes,
but this remains to be shown. We also view Swift’s algorithm as
transport-agnostic, including existing TCP stacks and Cloud vir-
tualization stacks. We believe that delay is useful for controlling
higher-level operations such as RPC rate, with the opportunity to
perform fine-grained load balancing and timeouts. Finally, while
we have substantially improved on predictable latency relative to
the state of the art, supporting <10us latency for short transfers
will require new techniques as target transfer times approach the
actual propagation time in datacenters.

ACKNOWLEDGMENTS
We would like to thank Neal Cardwell, Steven Gribble, Jeff Mogul,
the anonymous SIGCOMM reviewers and our shepherd, Yibo Zhu,
for providing valuable feedback. Swift is a multi-year effort at
Google that benefited from an ecosystem of support and innovation,
from RoCE to Pony Express. We thank the Pony Express and Stor-
age production, and support teams at Google for their contributions
to the work, including but not limited to, Inho Cho, Yi Cui, Qiaobin
Fu, Bill Veraka, Larry Greenfield, Sean Bauer, Michael Marty, Marc
de Kruijf, Nicholas Kidd, Milo Martin and Joel Scherplez. Manya
Ghobadi, Emily Blem, Vinh The Lam, Philip Wells and Ashish Naik
contributed to the work in the early days of Swift.

525

Swift: Delay is Simple and Effective for Congestion Control in the Datacenter

REFERENCES
[1] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Padhye,

Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. 2010.
Data Center TCP (DCTCP). In Proceedings of the ACM SIGCOMM 2010 Conference
(SIGCOMM âĂŹ10). Association for Computing Machinery, New York, NY, USA,
63âĂŞ74. https://doi.org/10.1145/1851182.1851192

[2] Mohammad Alizadeh, Abdul Kabbani, Tom Edsall, Balaji Prabhakar, Amin Vahdat,
and Masato Yasuda. 2012. Less is More: Trading a Little Bandwidth for Ultra-
low Latency in the Data Center. In Proceedings of the 9th USENIX Conference on
Networked Systems Design and Implementation (NSDI’12). USENIX Association,
Berkeley, CA, USA, 19–19. http://dl.acm.org/citation.cfm?id=2228298.2228324

[3] Mohammad Alizadeh, Shuang Yang, Milad Sharif, Sachin Katti, Nick McKe-
own, Balaji Prabhakar, and Scott Shenker. 2013. pFabric: Minimal Near-optimal
Datacenter Transport. In Proceedings of the ACM SIGCOMM 2013 Conference
(SIGCOMM ’13). ACM, New York, NY, USA, 435–446. https://doi.org/10.1145/
2486001.2486031

[4] M. Allman, K. Avrachenkov, U. Ayesta, J. Blanton, and P. Hurtig. 2010. Early Re-
transmit for TCP and Stream Control Transmission Protocol (SCTP). RFC 5827. RFC
Editor. http://www.rfc-editor.org/rfc/rfc5827.txt http://www.rfc-editor.org/
rfc/rfc5827.txt.

[5] Guido Appenzeller, Isaac Keslassy, and Nick McKeown. 2004. Sizing Router
Buffers. In Proceedings of the 2004 Conference on Applications, Technologies, Ar-
chitectures, and Protocols for Computer Communications (SIGCOMM âĂŹ04). As-
sociation for Computing Machinery, New York, NY, USA, 281âĂŞ292. https:
//doi.org/10.1145/1015467.1015499

[6] Mina Tahmasbi Arashloo, Alexey Lavrov, Manya Ghobadi, Jennifer Rexford,
David Walker, and David Wentzlaff. 2020. Enabling Programmable Transport
Protocols in High-Speed NICs. In 17th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 20). USENIX Association, Santa Clara, CA,
93–109. https://www.usenix.org/conference/nsdi20/presentation/arashloo

[7] Krste Asanović. 2014. FireBox: A Hardware Building Block for 2020 Warehouse-
Scale Computers. In 12th USENIX Conference on File and Storage Technologies.
USENIX Association, Santa Clara, CA.

[8] Wei Bai, Kai Chen, Li Chen, Changhoon Kim, and Haitao Wu. 2016. Enabling
ECN over Generic Packet Scheduling. In Proceedings of the 12th International
on Conference on Emerging Networking EXperiments and Technologies (CoNEXT
âĂŹ16). Association for Computing Machinery, New York, NY, USA, 191âĂŞ204.
https://doi.org/10.1145/2999572.2999575

[9] Luiz Barroso, Mike Marty, David Patterson, and Parthasarathy Ranganathan.
2017. Attack of the Killer Microseconds. Commun. ACM 60, 4 (March 2017),
48âĂŞ54. https://doi.org/10.1145/3015146

[10] E. Blanton and M. Allman. 2004. Using TCP Duplicate Selective Acknowledgement
(DSACKs) and Stream Control Transmission Protocol (SCTP) Duplicate Transmission
Sequence Numbers (TSNs) to Detect Spurious Retransmissions. RFC 3708. RFC
Editor.

[11] Google Cloud Blog. 2018. How Distributed Shuffle improves scal-
ability and performance in Cloud Dataflow pipelines. (2018). https:
//cloud.google.com/blog/products/data-analytics/how-distributed-shuffle-
improves-scalability-and-performance-cloud-dataflow-pipelines

[12] Lawrence S. Brakmo, Sean W. OâĂŹMalley, and Larry L. Peterson. 1994. TCP
Vegas: New Techniques for Congestion Detection and Avoidance. SIGCOMM
Comput. Commun. Rev. 24, 4 (Oct. 1994), 24âĂŞ35. https://doi.org/10.1145/
190809.190317

[13] Chelsio Communications. 2020. Chelsio TCP Offload Engine. https://
www.chelsio.com/nic/tcp-offload-engine/. (2020). Accessed: 2020-02-02.

[14] Li Chen, Kai Chen, Wei Bai, and Mohammad Alizadeh. 2016. Scheduling Mix-flows
in Commodity Datacenters with Karuna. In Proceedings of the ACM SIGCOMM
2016 Conference (SIGCOMM ’16). ACM, New York, NY, USA, 174–187. https:
//doi.org/10.1145/2934872.2934888

[15] Inho Cho, Keon Jang, and Dongsu Han. 2017. Credit-Scheduled Delay-Bounded
Congestion Control for Datacenters. In Proceedings of the ACM SIGCOMM 2017
Conference (SIGCOMM ’17). ACM, New York, NY, USA, 239–252.

[16] Jeffrey Dean and Luiz André Barroso. 2013. The Tail at Scale. Commun. ACM 56,
2 (Feb. 2013), 74âĂŞ80. https://doi.org/10.1145/2408776.2408794

[17] Nandita Dukkipati and Nick McKeown. 2006. Why Flow-Completion Time is
the Right Metric for Congestion Control. SIGCOMM Comput. Commun. Rev. 36, 1
(Jan. 2006), 59âĂŞ62. https://doi.org/10.1145/1111322.1111336

[18] Paolo Faraboschi, Kimberly Keeton, Tim Marsland, and Dejan Milojicic. 2015.
Beyond Processor-centric Operating Systems. In 15th Workshop on Hot Topics in
Operating Systems (HotOS XV). USENIX Association, Kartause Ittingen, Switzer-
land, 1–7. https://www.usenix.org/conference/hotos15/workshop-program/
presentation/faraboschi

[19] S. Floyd, J. Mahdavi, M. Mathis, and M. Podolsky. 2000. An Extension to the
Selective Acknowledgement (SACK) Option for TCP. RFC 2883. RFC Editor.

[20] Peter X. Gao, Akshay Narayan, Sagar Karandikar, Joao Carreira, Sangjin Han,
Rachit Agarwal, Sylvia Ratnasamy, and Scott Shenker. 2016. Network Require-
ments for Resource Disaggregation. In 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16). USENIX Association, Savannah,
GA, 249–264. https://www.usenix.org/conference/osdi16/technical-sessions/
presentation/gao

[21] Peter X. Gao, Akshay Narayan, Gautam Kumar, Rachit Agarwal, Sylvia Rat-
nasamy, and Scott Shenker. 2015. pHost: Distributed Near-optimal Datacenter
Transport over Commodity Network Fabric. In Proceedings of the 11th ACM Con-
ference on Emerging Networking Experiments and Technologies (CoNEXT ’15). ACM,
New York, NY, USA, Article 1, 12 pages. https://doi.org/10.1145/2716281.2836086

[22] Matthew P. Grosvenor, Malte Schwarzkopf, Ionel Gog, Robert N. M. Watson,
Andrew W. Moore, Steven Hand, and Jon Crowcroft. 2015. Queues Don’t Matter
When You Can JUMP Them!. In 12th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 15). USENIX Association, Oakland, CA, 1–
14. https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/
grosvenor

[23] Mark Handley, Costin Raiciu, Alexandru Agache, Andrei Voinescu, Andrew W.
Moore, Gianni Antichik, and Marcin Mojcik. 2017. Re-architecting Datacenter
Networks and Stacks for Low Latency and High Performance. In Proceedings of
the ACM SIGCOMM 2017 Conference (SIGCOMM ’17). ACM, New York, NY, USA,
29–42.

[24] Chi-Yao Hong, Matthew Caesar, and P. Brighten Godfrey. 2012. Finishing Flows
Quickly with Preemptive Scheduling. In Proceedings of the ACM SIGCOMM 2012
Conference (SIGCOMM ’12). ACM, New York, NY, USA, 127–138. https://doi.org/
10.1145/2342356.2342389

[25] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amirsaman
Memaripour, Yun Joon Soh, Zixuan Wang, Yi Xu, Subramanya R. Dulloor, Jishen
Zhao, and Steven Swanson. 2019. Basic Performance Measurements of the In-
tel Optane DC Persistent Memory Module. CoRR abs/1903.05714 (2019), 1–61.
arXiv:1903.05714 http://arxiv.org/abs/1903.05714

[26] Raj Jain, Dah Ming Chiu, and Hawe WR. 1984. A Quantitative Measure Of Fairness
And Discrimination For Resource Allocation In Shared Computer Systems. (09
1984), 37 pages.

[27] Dina Katabi, Mark Handley, and Charlie Rohrs. 2002. Congestion Control for
High Bandwidth-Delay Product Networks. In Proceedings of the 2002 Conference
on Applications, Technologies, Architectures, and Protocols for Computer Communi-
cations (SIGCOMM âĂŹ02). Association for Computing Machinery, New York,
NY, USA, 89âĂŞ102. https://doi.org/10.1145/633025.633035

[28] K. Katrinis, D. Syrivelis, D. Pnevmatikatos, G. Zervas, D. Theodoropoulos, I.
Koutsopoulos, K. Hasharoni, D. Raho, C. Pinto, F. Espina, S. Lopez-Buedo, Q. Chen,
M. Nemirovsky, D. Roca, H. Klos, and T. Berends. 2016. Rack-scale disaggregated
cloud data centers: The dReDBox project vision. In 2016 Design, Automation Test
in Europe Conference Exhibition (DATE). IEEE, Dresden, Germany, 690–695.

[29] Changhoon Kim, Parag Bhide, Ed Doe, Hugh Holbrook, Anoop Ghanwani, Dan
Daly, Mukesh Hira, and Bruce Davie. 2016. InâĂŘband Network Telemetry (INT).
https://p4.org/assets/INT-current-spec.pdf. (2016). Accessed: 2020-01-13.

[30] Ana Klimovic, Christos Kozyrakis, Eno Thereska, Binu John, and Sanjeev Kumar.
2016. Flash Storage Disaggregation. In Proceedings of the Eleventh European
Conference on Computer Systems (EuroSys âĂŹ16). Association for Computing
Machinery, New York, NY, USA, Article Article 29, 15 pages. https://doi.org/
10.1145/2901318.2901337

[31] Ana Klimovic, Heiner Litz, and Christos Kozyrakis. 2017. ReFlex: Remote Flash
Local Flash. In Proceedings of the Twenty-Second International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS
âĂŹ17). Association for Computing Machinery, New York, NY, USA, 345âĂŞ359.
https://doi.org/10.1145/3037697.3037732

[32] Gautam Kumar, Srikanth Kandula, Peter Bodik, and Ishai Menache. 2013. Virtu-
alizing Traffic Shapers for Practical Resource Allocation. In Presented as part of
the 5th USENIX Workshop on Hot Topics in Cloud Computing. USENIX, San Jose,
CA, 1–6. https://www.usenix.org/conference/hotcloud13/workshop-program/
presentations/Kumar

[33] C. Lee, C. Park, K. Jang, S. Moon, and D. Han. 2017. DX: Latency-Based Congestion
Control for Datacenters. IEEE/ACM Transactions on Networking 25, 1 (Feb 2017),
335–348. https://doi.org/10.1109/TNET.2016.2587286

[34] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan Zhuang, Fei Feng, Lingbo
Tang, Zheng Cao, Ming Zhang, Frank Kelly, Mohammad Alizadeh, and et
al. 2019. HPCC: High Precision Congestion Control. In Proceedings of the
ACM Special Interest Group on Data Communication (SIGCOMM âĂŹ19). As-
sociation for Computing Machinery, New York, NY, USA, 44âĂŞ58. https:
//doi.org/10.1145/3341302.3342085

[35] Youyou Lu, Jiwu Shu, Youmin Chen, and Tao Li. 2017. Octopus: an RDMA-enabled
Distributed Persistent Memory File System. In 2017 USENIX Annual Technical
Conference (USENIX ATC 17). USENIX Association, Santa Clara, CA, 773–785.
https://www.usenix.org/conference/atc17/technical-sessions/presentation/lu

[36] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christopher Alfeld, Sean Bauer,
Carlo Contavalli, Michael Dalton, Nandita Dukkipati, William C. Evans, Steve
Gribble, and et al. 2019. Snap: A Microkernel Approach to Host Networking. In
Proceedings of the 27th ACM Symposium on Operating Systems Principles (SOSP
âĂŹ19). Association for Computing Machinery, New York, NY, USA, 399âĂŞ413.
https://doi.org/10.1145/3341301.3359657

[37] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. 1996. TCP Selective Acknowl-
edgment Options. RFC 2018. RFC Editor.

[38] Radhika Mittal, Vinh The Lam, Nandita Dukkipati, Emily Blem, Hassan Wassel,
Monia Ghobadi, Amin Vahdat, Yaogong Wang, David Wetherall, and David Zats.
2015. TIMELY: RTT-based Congestion Control for the Datacenter. In Proceedings
of the 2015 ACM Conference on Special Interest Group on Data Communication

526

https://doi.org/10.1145/1851182.1851192
http://dl.acm.org/citation.cfm?id=2228298.2228324
https://doi.org/10.1145/2486001.2486031
https://doi.org/10.1145/2486001.2486031
http://www.rfc-editor.org/rfc/rfc5827.txt
http://www.rfc-editor.org/rfc/rfc5827.txt
http://www.rfc-editor.org/rfc/rfc5827.txt
https://doi.org/10.1145/1015467.1015499
https://doi.org/10.1145/1015467.1015499
https://www.usenix.org/conference/nsdi20/presentation/arashloo
https://doi.org/10.1145/2999572.2999575
https://doi.org/10.1145/3015146
https://cloud.google.com/blog/products/data-analytics/how-distributed-shuffle-improves-scalability-and-performance-cloud-dataflow-pipelines
https://cloud.google.com/blog/products/data-analytics/how-distributed-shuffle-improves-scalability-and-performance-cloud-dataflow-pipelines
https://cloud.google.com/blog/products/data-analytics/how-distributed-shuffle-improves-scalability-and-performance-cloud-dataflow-pipelines
https://doi.org/10.1145/190809.190317
https://doi.org/10.1145/190809.190317
https://www.chelsio.com/nic/tcp-offload-engine/
https://www.chelsio.com/nic/tcp-offload-engine/
https://doi.org/10.1145/2934872.2934888
https://doi.org/10.1145/2934872.2934888
https://doi.org/10.1145/2408776.2408794
https://doi.org/10.1145/1111322.1111336
https://www.usenix.org/conference/hotos15/workshop-program/presentation/faraboschi
https://www.usenix.org/conference/hotos15/workshop-program/presentation/faraboschi
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/gao
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/gao
https://doi.org/10.1145/2716281.2836086
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/grosvenor
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/grosvenor
https://doi.org/10.1145/2342356.2342389
https://doi.org/10.1145/2342356.2342389
http://arxiv.org/abs/1903.05714
http://arxiv.org/abs/1903.05714
https://doi.org/10.1145/633025.633035
https://p4.org/assets/INT-current-spec.pdf
https://doi.org/10.1145/2901318.2901337
https://doi.org/10.1145/2901318.2901337
https://doi.org/10.1145/3037697.3037732
https://www.usenix.org/conference/hotcloud13/workshop-program/presentations/Kumar
https://www.usenix.org/conference/hotcloud13/workshop-program/presentations/Kumar
https://doi.org/10.1109/TNET.2016.2587286
https://doi.org/10.1145/3341302.3342085
https://doi.org/10.1145/3341302.3342085
https://www.usenix.org/conference/atc17/technical-sessions/presentation/lu
https://doi.org/10.1145/3341301.3359657

Kumar et al.

(SIGCOMM ’15). ACM, New York, NY, USA, 537–550. https://doi.org/10.1145/
2785956.2787510

[39] Behnam Montazeri, Yilong Li, Mohammad Alizadeh, and John Ousterhout. 2018.
Homa: A Receiver-driven Low-latency Transport Protocol Using Network Pri-
orities. In Proceedings of the 2018 Conference of the ACM Special Interest Group
on Data Communication (SIGCOMM ’18). ACM, New York, NY, USA, 221–235.
https://doi.org/10.1145/3230543.3230564

[40] Jacob Nelson, Brandon Holt, Brandon Myers, Preston Briggs, Luis Ceze, Simon
Kahan, and Mark Oskin. 2015. Latency-Tolerant Software Distributed Shared
Memory. In 2015 USENIX Annual Technical Conference (USENIX ATC 15). USENIX
Association, Santa Clara, CA, 291–305. https://www.usenix.org/conference/
atc15/technical-session/presentation/nelson

[41] John Ousterhout, Arjun Gopalan, Ashish Gupta, Ankita Kejriwal, Collin Lee,
Behnam Montazeri, Diego Ongaro, Seo Jin Park, Henry Qin, Mendel Rosenblum,
et al. 2015. The RAMCloud Storage System. ACM Transactions on Computer
Systems (TOCS) 33, 3 (2015), 7.

[42] Jonathan Perry, Amy Ousterhout, Hari Balakrishnan, Devavrat Shah, and Hans
Fugal. 2014. Fastpass: A Centralized “Zero-queue” Datacenter Network. In Pro-
ceedings of the ACM SIGCOMM 2014 Conference (SIGCOMM ’14). ACM, New York,
NY, USA, 307–318. https://doi.org/10.1145/2619239.2626309

[43] Ahmed Saeed, Nandita Dukkipati, Vytautas Valancius, Vinh The Lam, Carlo
Contavalli, and Amin Vahdat. 2017. Carousel: Scalable Traffic Shaping at End
Hosts. In Proceedings of the Conference of the ACM Special Interest Group on Data
Communication (SIGCOMM âĂŹ17). Association for Computing Machinery, New
York, NY, USA, 404âĂŞ417. https://doi.org/10.1145/3098822.3098852

[44] Ahmed Saeed, Yimeng Zhao, Nandita Dukkipati, Ellen Zegura, Mostafa Ammar,
Khaled Harras, and Amin Vahdat. 2019. Eiffel: Efficient and Flexible Software
Packet Scheduling. In 16th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 19). USENIX Association, Boston, MA, 17–32. https:
//www.usenix.org/conference/nsdi19/presentation/saeed

[45] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang. 2018. LegoOS: A
Disseminated, Distributed OS for Hardware Resource Disaggregation. In 13th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 18).
USENIX Association, Carlsbad, CA, 69–87. https://www.usenix.org/conference/
osdi18/presentation/shan

[46] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armistead, Roy
Bannon, Seb Boving, Gaurav Desai, Bob Felderman, Paulie Germano, and et al.
2015. Jupiter Rising: A Decade of Clos Topologies and Centralized Control in
GoogleâĂŹs Datacenter Network. SIGCOMM Comput. Commun. Rev. 45, 4 (Aug.
2015), 183âĂŞ197. https://doi.org/10.1145/2829988.2787508

[47] Arjun Singhvi, Aditya Akella, Dan Gibson, Thomas F. Wenisch, Monica Wong-
Chan, Sean Clark, Milo M. K. Martin, Moray McLaren, Prashant Chandra, Rob
Cauble, Hassan M. G. Wassel, Behnam Montazeri, Simon L. Sabato, Joel Scherpelz,
and Amin Vahdat. 2020. 1RMA: Re-envisioning Remote Memory Access for Multi-
tenant Datacenters. In Proceedings of the 2020 ACM Conference on Special Interest
Group on Data Communication (SIGCOMM ’20). ACM, New York, NY, USA, to
appear.

[48] IEEE Std. 2010. IEEE 802.11Qau. Congestion notification. (2010).

[49] IEEE Std. 2011. IEEE. 802.11Qbb. Priority based flow control. (2011).
[50] Mohit P. Tahiliani, Vishal Misra, and K. K. Ramakrishnan. 2019. A Principled

Look at the Utility of Feedback in Congestion Control. In Proceedings of the
2019 Workshop on Buffer Sizing (BS âĂŹ19). Association for Computing Machin-
ery, New York, NY, USA, Article Article 8, 5 pages. https://doi.org/10.1145/
3375235.3375243

[51] Jordan Tigani and Siddartha Naidu. 2014. Google BigQuery Analytics. Wiley,
Indianapolis, IN, USA.

[52] Balajee Vamanan, Jahangir Hasan, and T.N. Vijaykumar. 2012. Deadline-aware
Datacenter TCP (D2TCP). In Proceedings of the ACM SIGCOMM 2012 Conference
(SIGCOMM ’12). ACM, New York, NY, USA, 115–126. https://doi.org/10.1145/
2342356.2342388

[53] Washington State Department of Transportation. 2020. What is a roundabout?
https://www.wsdot.wa.gov/Safety/roundabouts/BasicFacts.htm. (2020). Ac-
cessed: 2020-01-13.

[54] Christo Wilson, Hitesh Ballani, Thomas Karagiannis, and Ant Rowtron. 2011.
Better Never Than Late: Meeting Deadlines in Datacenter Networks. In Proceed-
ings of the ACM SIGCOMM 2011 Conference (SIGCOMM ’11). ACM, New York,
NY, USA, 50–61. https://doi.org/10.1145/2018436.2018443

[55] Jian Xu and Steven Swanson. 2016. NOVA: A Log-structured File System for
Hybrid Volatile/Non-volatile Main Memories. In 14th USENIX Conference on File
and Storage Technologies (FAST 16). USENIX Association, Santa Clara, CA, 323–338.
https://www.usenix.org/conference/fast16/technical-sessions/presentation/xu

[56] Jian Yang, Joseph Izraelevitz, and Steven Swanson. 2019. Orion: A Distributed
File System for Non-Volatile Main Memory and RDMA-Capable Networks. In
17th USENIX Conference on File and Storage Technologies (FAST 19). USENIX
Association, Boston, MA, 221–234. https://www.usenix.org/conference/fast19/
presentation/yang

[57] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauly, Michael J. Franklin, Scott Shenker, and Ion Stoica. 2012. Re-
silient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster
Computing. In Presented as part of the 9th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 12). USENIX, San Jose, CA, 15–28. https:
//www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia

[58] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and
Ion Stoica. 2010. Spark: Cluster Computing with Working Sets. In Proceedings of
the 2nd USENIX Conference on Hot Topics in Cloud Computing (HotCloudâĂŹ10).
USENIX Association, USA, 10.

[59] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina Lipshteyn,
Yehonatan Liron, Jitendra Padhye, Shachar Raindel, Mohamad Haj Yahia, and
Ming Zhang. 2015. Congestion Control for Large-Scale RDMA Deployments.
In Proceedings of the 2015 ACM Conference on Special Interest Group on Data
Communication (SIGCOMM ’15). ACM, New York, NY, USA, 523–536. https:
//doi.org/10.1145/2785956.2787484

[60] Yibo Zhu, Monia Ghobadi, Vishal Misra, and Jitendra Padhye. 2016. ECN or
Delay: Lessons Learnt from Analysis of DCQCN and TIMELY. In Proceedings of
the 12th International on Conference on Emerging Networking EXperiments and
Technologies (CoNEXT âĂŹ16). Association for Computing Machinery, New York,
NY, USA, 313âĂŞ327. https://doi.org/10.1145/2999572.2999593

527

https://doi.org/10.1145/2785956.2787510
https://doi.org/10.1145/2785956.2787510
https://doi.org/10.1145/3230543.3230564
https://www.usenix.org/conference/atc15/technical-session/presentation/nelson
https://www.usenix.org/conference/atc15/technical-session/presentation/nelson
https://doi.org/10.1145/2619239.2626309
https://doi.org/10.1145/3098822.3098852
https://www.usenix.org/conference/nsdi19/presentation/saeed
https://www.usenix.org/conference/nsdi19/presentation/saeed
https://www.usenix.org/conference/osdi18/presentation/shan
https://www.usenix.org/conference/osdi18/presentation/shan
https://doi.org/10.1145/2829988.2787508
https://doi.org/10.1145/3375235.3375243
https://doi.org/10.1145/3375235.3375243
https://doi.org/10.1145/2342356.2342388
https://doi.org/10.1145/2342356.2342388
https://www.wsdot.wa.gov/Safety/roundabouts/BasicFacts.htm
https://doi.org/10.1145/2018436.2018443
https://www.usenix.org/conference/fast16/technical-sessions/presentation/xu
https://www.usenix.org/conference/fast19/presentation/yang
https://www.usenix.org/conference/fast19/presentation/yang
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia
https://doi.org/10.1145/2785956.2787484
https://doi.org/10.1145/2785956.2787484
https://doi.org/10.1145/2999572.2999593

Swift: Delay is Simple and Effective for Congestion Control in the Datacenter

Appendices are supporting material that have not been peer-
reviewed.

A CONVERSIONBETWEENHOSTANDNICCLOCKS
Some delay computations, e.g., NIC-Rx-queuing delay, require a
combination of NIC HW and host SW clocks. Swift uses a simple
linear-extrapolation approach to convert the incoming HW clock
into a host-clock value to compute such delays:

host_clock = ratio · nic_clock + o f f set
We update the ratio and o f f set periodically. The algorithm is sim-
ple: we read the nic_clock , then the host_clock and also maintain
the previous set of readings as last_nic_clock and last_host_clock .
The ratio and o f f set can then be updated as:

ratio =
host_clock − last_host_clock
nic_clock − last_nic_clock

o f f set = host_clock − ratio · nic_clock

B PACKET FORMAT
Figure 23 shows the format that Swift uses, which consumes 4 bytes
to reflect back remote-side queuing delay. In addition, 1 byte is used
for to echo back forward-side hop-count by computing the differ-
ence between the initial TTL and observed TTL on the incoming
packet.

L2 IPv4/v6 Transport
Remote
Queuing

NIC Rx
Timestamp

0 . . . 31 0 . . . 31

Appended
locally

Forward
hop-count

0 . . . 7

Figure 23: Packet format changes for Swift.

C DELAYS WITH SHARED RX/TX SCHEDULING
Traditionally, links are bidirectional, i.e., incoming traffic doesn’t
affect outgoing traffic on a link. Our deployment of Swift in Snap
had a unique challenge since Rx and Tx scheduling is shared in Snap.
While counter-intuitive, Swift design addresses this by factoring
local NIC queue buildup as part of endpoint congestion. The insight
is taken from traffic-roundabouts which also have shared Rx and Tx
scheduling; factoring local NIC-Rx delay emulates yield-at-entry as
the right-of-way when looked at it as a roundabout [53]. In other
words, if a machine’s NIC-Rx queue builds up, it should prioritize
clearing those packets before trying to inject more packets (through
Tx) in the network.

D EXPERIMENTWITH TARGET DELAY
In our experience, a nice property of delay is that as low latency
networking stacks advance to avoid interference from host CPUs,
Swift continues to work well just with a simple knob of target delay.
In Figure 24, we show results from a testbed implementation of
Swift in a prototype stack where it is able to achieve near line-rate
throughput (∼100Gbps) even at 15µs RTT.

E DELAY OR ECN
Zhu et al. [60] called out challenges in using delay as a congestion-
signal; we appreciate how some aspects of Swift's design ended up
addressing these challenges.

0 20 40 60 80 100
Target Delay (µs)

0

40

80

120

160

200

A
ch

ie
ve

d
R

T
T

(µ
s)

Throughput
99.9th-p RTT
Median RTT
Target delay

0

20

40

60

80

100

Th
ro

ug
hp

ut
(G

bp
s)

Figure 24: Achieved RTT vs. target delay, 160-flow incast.

• The authors show that a fluid model of TIMELY does not have a
unique fixed point because of reliance on the gradient-based con-
trol. Swift rather uses a target delay (vs. gradient-based control)
and in this way, doesn’t suffer from multiple fixed-points at con-
vergence. The authors echo our experience and provide a version
called, Patched TIMELY, that also gets rid of the delay-gradient.
• The authors rightly note that delay lags behind ECN in that mod-

ern switches mark ECN at packet-egress while delay, implicitly,
measures congestion when the packet arrives at the bottleneck
switch. As discussed in §3.2 and shown in experiments §5, Swift
uses a low target delay and does not delay ACKs, and hence
largely mitigates this concern. Testimony to this is our expe-
rience with Swift achieving low latency and losses at scale at
Google.
• The authors provide an important result (Theorem 6 in Refer-

ence [60]): purely relying on end-to-end delay measurements for
congestion control can provide either fairness or fixed-delay but
not both. The reason is that if the delay is controlled to a fixed
value, the algorithm is agnostic of the number of flows making
the system of equations inconsistent. Swift resolves this by not
using the same target-delay for all flows and instead scales target
delay as explained in §3.5. For example, flow based scaling varies
target delay as function of congestion window and converges to
a single fixed point. As shown in Figure 21, this greatly improves
fairness especially under large scale incast.
• The authors in Reference [50] argue that end-to-end delay is an

ambiguous signal in that a flow may traverse a wide variety of
link speeds across a number of hops. We believe while this can be
a valid concern for the Internet traffic, this concern is much less
applicable to a datacenter CC like Swift where paths are known
and the link speeds don’t vary as widely as in the Internet. Swift
uses topology-based scaling to account for different hop-counts
across flows.
• In addition, delay has a few important operational advantages.

First, delay evolves naturally as networks become faster, and
tuning it at scale is simpler than ECN especially for production
environments with multiple QoS classes—it has been shown that
ECN is problematic in such scenario and sojourn time is more
robust [8]. Second, delay has a multi-bit nature as a congestion
signal; it provides visibility into the extent of congestion, unlike
ECN which only signals whether congestion exists or not. That
said, we look forward to integrating multi-bit ECN signals like
sojourn-time [8] and INT [29] in Swift’s framework.

528

	Abstract
	1 Introduction
	2 Motivation
	3 Swift Design & Implementation
	3.1 Using Delay to Signal Congestion
	3.2 Simple Target Delay Window Control
	3.3 Fabric vs. Endpoint Congestion
	3.4 Large-Scale Incast
	3.5 Scaling the Fabric Target Delay
	3.6 Loss Recovery and ACKs
	3.7 Coexistence via QoS

	4 Takeaways from Production
	4.1 Measurement Methodology
	4.2 Performance At Scale
	4.3 Use of Shared Infrastructure
	4.4 Fabric and Host Congestion
	4.5 Application Performance
	4.6 Production Experience

	5 Experimental Results
	5.1 Effect of Target Delay
	5.2 Throughput/Latency Curves
	5.3 Large-scale Incast
	5.4 Endpoint Congestion
	5.5 Flow Fairness

	6 Related Work
	7 Conclusion and Future Directions
	Acknowledgments
	References
	A Conversion between Host and NIC Clocks
	B Packet Format
	C Delays with Shared Rx/Tx Scheduling
	D Experiment with target delay
	E Delay or ECN

