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ABSTRACT
We briefly describe the history behind the Ethane paper and its
ultimate evolution into SDN and beyond.
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1 THE ETHANE STORY
SDN is often described as a revolutionary architectural approach
to building networks; after all, it was named and first discussed in
the context of research. So you might be surprised to learn that
we do not think SDN is defined by a particular architecture or
technical approach at all. Rather, we think the revolutionary aspect
of SDN was about who is in charge. Who gets to decide what
functions, protocols, and features are supported by a network: Is it
the equipment vendors (e.g., router manufacturers), the technology
providers (e.g., chip and optics manufacturers), or those who own
and operate networks? The big change that happened in networking
since the Ethane paper was published in 2007, and since the term
SDN was first used, is that those who own and operate networks
are starting to take charge of how their networks operate. This, we
believe, is the real story of SDN. In this paper we review how the
revolution started, the intellectual and technological underpinnings
that gave rise to it, and how it has continued well beyond SDN.

Before 2000, the Internet grew incredibly quickly because it was
easy to plug interoperable pieces together, with no need to ask
a central controlling authority; it helped that the network infras-
tructure was deliberately and carefully designed to be simple and
streamlined. It was taken for granted that networks were built us-
ing commercially available switches, routers, base-stations, and
access points sold by traditional networking equipment vendors,
then strung together and configured to implement the behavior the
network operator desired. Over time, thousands of new IETF RFCs
and IEEE standards were written and router manufacturers – who
needed to serve many customers with one product – added more
and more features to their routers. By the mid 2000s, the routers
used by ISPs were so complicated that they were based on more
than 100 million lines of source code – ironically, more than 10-
times the complexity of the largest telephone exchange ever built –
and they supported hundreds of protocols. The Internet was paying
the price for this complexity: routers were bloated, power hungry,

and expensive, and internally they were based on old engineering
practices and poorly defined APIs.

Yet, most customers only used a handful of these features. One
approach would have been to completely redesign the router hard-
ware and software around cleaner APIs, better abstractions, and
modern software practices. But time-to-market pressures meant
they couldn’t start over with a simpler design. And while in other
industries startups can enter the market with more efficient ap-
proaches, the barrier to entry in the router business had been made
so tall that there was little chance for significant innovation. Instead,
the router vendors continued to fight problems of reliability and
security brought on by overwhelming complexity. The research
community, sensing the frustration and struggling to get new ideas
adopted, labeled the Internet as “ossified” and unable to change. In
response, they started research programs like NewArch [7], GENI
[4], FIND [9], 100x100, and the Clean Slate Program to investigate
how the Internet might move past this stagnation.

Arising out of this intellectual ferment, our Ethane paper [18]
described a different way of building and managing a network.
We had noticed that on Stanford campus there were about 2,000
Ethernet switches and routers in wiring closets, each one contained
one or more control processors running millions of lines of code.
The essential networking task was quite simple – authenticate users
and route packets over Ethernet and IPv4 between local and remote
end-points – yet the university employed over 200 people to keep
the network going.

It all seemed unnecessarily complicated and expensive, and al-
most impossible to manage as no one person could have a clear view
of how the whole network operated. So we decided to design and
prototype a network that used operating system design principles so
that the entire network could be managed via a centrally-declared,
high-level policy. Our goal was both to reduce operational overhead
and complexity, and to show that it was possible to build a network
architecture that could be globally programmed from a centralized
(or tightly clustered) control plane thus vastly reducing both the
programming and operating models.

For Ethane, we built and deployed access points and (NetFPGA-
based) switches that were externally controlled from central servers.
The prototype was an extreme design, more as a thought experi-
ment, to test the limits of scale: Every flow was intercepted (later
called reactive control) and sent to a central controller which au-
thenticated the user and then decided whether or not the flow was
allowed by consulting the 137 policies we identified in our campus
network (e.g., laptops cannot accept incoming connections; VoIP
phones must not be moved so they could be found in an E911 emer-
gency; Windows machines should be confined to their own VLAN).
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The control plane, running remotely on a regular Linux server,
chose the route and told the switches how to forward packets.

2 LESSONS FROM ETHANE
The primary takeaway was not that this approach was too hard,
but that it was so easy. To our surprise, we concluded that the 2,000
CPUs in the switches on campus could be replaced by a single CPU,
with easily enough capacity to make decisions for all the flows on
campus. We also learned some more general architectural lessons:

• The network control plane lacked good abstractions.
The data plane, through encapsulation and layering, already
had well-defined protocol abstractions; but at the time, the
control plane had almost none. The control plane implemen-
tations lived within individual network elements, and had a
proprietary interface with the forwarding ASIC.

• There was a natural initial abstraction. Many network
control mechanisms (e.g., routing protocols, firewall func-
tions, management) can be broken into two parts: (1) A dis-
tributed protocol that builds a consistent global view of the
state of the network (e.g., the link-state protocol in OSPF
that builds a view of the current topology, or a database of
authenticated users in 802.1x), and (2) An algorithm that
acts upon the global state (e.g. Dijkstra’s algorithm, or user-
specific access control). We learned that we could separate
the two by providing the global view of network state as an
abstraction upon which many use-specific algorithms could
be built.

• Innovation required two open interfaces. While many
different algorithms can be applied against the global view,
rapid innovation can only happen if the operators – rather
than the equipment vendor – determine which algorithms
are deployed. This requires that there be an open interface to
this control abstraction, so operators can deploy code (from
third-party vendors, or open-source, or created in-house)
that uses this interface. In addition, these algorithms must
also be able to access an open interface that allows them
to configure the forwarding plane in each network element.
After our experience with Ethane, we grew to see these two
interfaces as the crucial enablers of innovation.

We firmly believed that networks built this way would be sim-
pler to deploy, upgrade and manage. Eager to share our conclusions
with others, we went to talk to our colleagues at a few networking
equipment vendors. The reaction was very interesting: At software
companies, the reaction was almost a shrugging of shoulders - of
course: Software is eating the world because of the ease of develop-
ment, testing and deployment of new ideas. If you put software in
the hands of developers, they will tailor it to meet their needs.

At networking equipment companies, the receptionwas quite the
opposite: Theywere threatened by amodel that handed over control
to the network owner. On one particular occasion, we presented
our ideas to Cisco; they went red in the face with anger and told
us it could never work. It was in the parking lot after our meeting
that we resolved to try and make it happen.

We embarked on a deliberate two pronged approach: The first
was to realize our newfound architectural lessons in a concrete
design. To do that, we created an open API (OpenFlow) that allowed

the forwarding plane in each router to be externally configured,
and a general SDN controller (NOX) that would expose the global
network view and use OpenFlow to control the forwarding plane.
The goal was to offer platforms and standards that could be used
by academics, researchers, hobbyists, and industry for whatever
purposes suited them. It was the start of the community movement
behind SDN, which then lead to NOX [22], POX [12], FlowVisor
[28] and so on.

The second prong was commercial. Our discussions with net-
working equipment vendors had convinced us that they would be
very resistant to our approach, so we would need to bring products
to market ourselves. We started Nicira in 2007 to develop products
around SDN and provide the necessary support needed for pro-
duction deployment. In the early days Nicira worked with Google
to develop ONIX, the distributed SDN control plane that Google
deployed in its networks. Google first published their deployment
of ONIX/OpenFlow in their private backbone network in 2013 [23]
and then in their data center in 2016 [29].

But soon Nicira realized that switch vendors were not eager to
add a usable OpenFlow interface to control their equipment re-
motely from ONIX. They felt too threatened by the SDN model
to engage, and instead continued their proprietary ways. Nicira
was then at a crossroads, in that our progress was being stymied
by the very stagnation we were trying to overcome. Fortunately,
around this time virtualized datacenters were becoming more pop-
ular, and they provided two things necessary for the successful
commercialization of SDN: a killer app, and a viable deployment
path.

The “killer app” was network virtualization. Network virtual-
ization allows each tenant to run a virtual network in the cloud
that has its own address space and is configured according to the
tenant’s requirements, thus giving each tenant the illusion of hav-
ing their own private network completely under their control. This
was something customers wanted, but could not be done at scale
with traditional network management.

But how could this be deployed without the switches supporting
OpenFlow? In a virtualized datacenter, every server runs a soft-
ware switch, called a vswitch, that provides connectivity between
the VMs residing on the server. We recognized that supporting an
application like network virtualization did not require controlling
the forwarding plane in every switch, but only at the vswitches on
the servers. Nicira then developed Open vSwitch (OVS[26]) to pro-
vide an open-source vswitch that could be controlled remotely by
ONIX or any SDN controller. OVS was quickly adopted, and it then
became possible to deploy edge-based SDN systems in virtualized
datacenters without touching any of the networking hardware.

This is how network virtualization became the first widely-
deployed SDN application: an urgent customer need, and a viable
deployment path. The descendant of Nicira’s original implemen-
tation of network virtualization, NSX[24], is now a multi-billion
dollar business for VMware, and many others have built upon the
original ideas.

3 THE FOUNDATIONS OF SDN
SDN as a term has become so broad it now extends far beyond
the original work to encompass an industry movement that was
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starting to happen anyway, as well as many projects and research
efforts that far predate our work. So with that in mind, we reflect a
bit about the work that we drew inspiration from when building
Ethane, then OpenFlow, NOX[22], ONIX[25], and NSX.

The original problem statement, of a centrally managed network
with an OS-like unified policy language, came from Martín’s expe-
rience working on secure government networks, where it was clear
that traditional network designs simply were not suited for imple-
menting a unified network security policy. We drew inspiration
from 4D [21] in the original solution. While we ultimately choose
a different point in the design space based on flows for control and
generality, we strongly agreed with the notion of decoupling the
control plane, and relegating the dataplane to simple forwarding
elements that were remotely populated.

Over the years of pursuing the more general agenda of giv-
ing operators control over their networks, we have drawn from
a tremendous amount of previous work, both from the academic
literature and internal commercial efforts. We would like to stress
that much of that work also lay the foundation for efforts done un-
der the SDN umbrella, so SDN’s roots are far broader than Ethane.
While there is too much history to adequately cover here, Feamster
et. al. have provided a thorough discussion [20].

In addition to these intellectual roots, there were two powerful
technological forces that gave rise to SDN. One was the rise of mod-
ern hyperscale datacenters. They created a new market segment
which (i) demanded more flexibility than traditional networks, (ii)
had extensive green-field deployments, so they were not chained to
traditional approaches, and (iii) were run by network operators who
had the expertise to devise their own networking solutions if given
the appropriate hardware. The other trend was the rise of merchant
switching silicon – from providers such as Broadcom, Fulcrum, and
Marvell – that enabled the development of white-box networking
gear. As a result, the operators of hyperscale datacenters could
insist on being in control of their network: SDN was perhaps the
means by which they did so, but their economic and intellectual
power, coupled with the availability of white-box switches, is what
really changed who was in control.

4 THE TREND CONTINUES
SDN is only the first step in giving operators control over their
networks. While SDN focused mostly on the control plane, two
more recent developments deal with the dataplane. While most
discussion of networks tend to focus on routers, there are a wide
variety of network “middleboxes” deployed in most networks, such
as firewalls, WAN optimizers, and the like. In fact, according to
a study [27], roughly one-third of the network elements in most
networks are these more sophisticated network functions. Just like
routers, these network functions were typically provided by ven-
dors who packaged proprietary software (and sometimes hardware)
in a closed box. In 2012, a white paper on Network Function Virtu-
alization (NFV) [8] was written by network operators that called
for these network functions to be deployed as VMs on racks of com-
modity servers. This would allow network operators to install and
remove these network functions without any change in hardware,
giving them much more control over their network. While NFV
is not yet widely adopted, there is widespread agreement on its

inevitability. NFV is not directly connected to, or enabled by, SDN,
but it shares the mission of changing the locus of control.

However, neither SDN nor NFV wrested control of the actual
packet processing functions in routers away from the traditional
vendors, and if a network owner is not in charge of how packets
are processed, then they are not really in charge of their network.
In recent years there has been an important trend towards making
the forwarding plane programmable, as exemplified by the P4 pro-
gramming language [17] and various programmable forwarding
chips.

Giving operators control over their networks has played out
largely in the commercial arena, changing how we build networks
for datacenters, carriers, and enterprises. Open-source projects
have, for the first time, made significant inroads into production
networks, in addition to software switches such as OVS, BESS
[1], and VPP [16], this includes switch operating systems (e.g.
SONiC [14], FBOSS [19], Stratum [15], DANOS [3]), control planes
(e.g. ONOS [11], ODL [13]) and network-wide management systems
(e.g. CORD [2], ONAP [10]).

The SDN trend has also been important for extending networks
into domains where establishing connectivity has been hard. In
one such effort, a network virtualization approach similar to NSX
was used to implement a distributed mobile packet core that works
with low cost base stations, and whose management stack runs in
the cloud [6]. True to the early promises of SDN, this results in the
ability to dramatically reduce the cost of building out LTE networks,
and to make them easier to set up and manage. This has been used
to connect a number of rural communities, such as Havasupai [5],
the most remote city in the lower 48, where traditional approaches
have simply been cost or operationally prohibitive.

SDN came about because of a pressing need for those who own
and control networks to decide how they work. With NFV and
programmable switches now joining SDN in this movement, we
now have the capability to install programmable interfaces at every
level of the network, from the control plane to the forwarding plane
to more sophisticated network functions. When these technologies
become ubiquitously deployed, network operators will be in full
control of their networks.

Besides enabling new functionality and the ability to customize
the network to the operator’s needs, this full set of programmable
interfaces allows the networking community to start applying other
tools – such as verification and declarative interfaces – that are
widely used elsewhere in systems. If we continue to push forward
with this trend, we soon will not be teaching students about pro-
tocols. Instead, we will teach them about a programmable sub-
strate, called a network, where you describe a behavior you want
in software, which is then compiled to make future versions of the
Internet.
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