
Open access to the Proceedings of
the 15th USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by USENIX.

This paper is included in the Proceedings of the
15th USENIX Symposium on Networked

Systems Design and Implementation (NSDI ’18).
April 9–11, 2018 • Renton, WA, USA

ISBN 978-1-939133-01-4

Azure Accelerated Networking:
SmartNICs in the Public Cloud

Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou, Alireza Dabagh,
Mike Andrewartha, Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric Chung,

Harish Kumar Chandrappa, Somesh Chaturmohta, Matt Humphrey, Jack Lavier,
Norman Lam, Fengfen Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Popuri, Shachar Raindel,

Tejas Sapre, Mark Shaw, Gabriel Silva, Madhan Sivakumar, Nisheeth Srivastava,
Anshuman Verma, Qasim Zuhair, Deepak Bansal, Doug Burger, Kushagra Vaid,

David A. Maltz, and Albert Greenberg, Microsoft

https://www.usenix.org/conference/nsdi18/presentation/firestone

Azure Accelerated Networking: SmartNICs in the Public Cloud
Daniel Firestone Andrew Putnam Sambhrama Mundkur Derek Chiou Alireza Dabagh

Mike Andrewartha Hari Angepat Vivek Bhanu Adrian Caulfield Eric Chung
Harish Kumar Chandrappa Somesh Chaturmohta Matt Humphrey Jack Lavier Norman Lam
Fengfen Liu Kalin Ovtcharov Jitu Padhye Gautham Popuri Shachar Raindel Tejas Sapre

Mark Shaw Gabriel Silva Madhan Sivakumar Nisheeth Srivastava Anshuman Verma Qasim Zuhair
Deepak Bansal Doug Burger Kushagra Vaid David A. Maltz Albert Greenberg

Microsoft
Abstract

Modern cloud architectures rely on each server running its
own networking stack to implement policies such as tun-
neling for virtual networks, security, and load balancing.
However, these networking stacks are becoming increas-
ingly complex as features are added and as network speeds
increase. Running these stacks on CPU cores takes away
processing power from VMs, increasing the cost of run-
ning cloud services, and adding latency and variability to
network performance.

We present Azure Accelerated Networking (AccelNet),
our solution for offloading host networking to hardware,
using custom Azure SmartNICs based on FPGAs. We
define the goals of AccelNet, including programmability
comparable to software, and performance and efficiency
comparable to hardware. We show that FPGAs are the best
current platform for offloading our networking stack as
ASICs do not provide sufficient programmability, and em-
bedded CPU cores do not provide scalable performance,
especially on single network flows.

Azure SmartNICs implementing AccelNet have been
deployed on all new Azure servers since late 2015 in a
fleet of >1M hosts. The AccelNet service has been avail-
able for Azure customers since 2016, providing consis-
tent <15µs VM-VM TCP latencies and 32Gbps through-
put, which we believe represents the fastest network avail-
able to customers in the public cloud. We present the
design of AccelNet, including our hardware/software co-
design model, performance results on key workloads, and
experiences and lessons learned from developing and de-
ploying AccelNet on FPGA-based Azure SmartNICs.

1 Introduction
The public cloud is the backbone behind a massive and
rapidly growing percentage of online software services [1,
2, 3]. In the Microsoft Azure cloud alone, these services
consume millions of processor cores, exabytes of stor-
age, and petabytes of network bandwidth. Network per-
formance, both bandwidth and latency, is critical to most
cloud workloads, especially interactive customer-facing
workloads.

As a large public cloud provider, Azure has built its
cloud network on host-based software-defined network-
ing (SDN) technologies, using them to implement almost

all virtual networking features, such as private virtual net-
works with customer supplied address spaces, scalable L4
load balancers, security groups and access control lists
(ACLs), virtual routing tables, bandwidth metering, QoS,
and more. These features are the responsibility of the host
platform, which typically means software running in the
hypervisor.

The cost of providing these services continues to in-
crease. In the span of only a few years, we increased net-
working speeds by 40x and more, from 1GbE to 40GbE+,
and added countless new features. And while we built in-
creasingly well-tuned and efficient host SDN packet pro-
cessing capabilities, running this stack in software on the
host requires additional CPU cycles. Burning CPUs for
these services takes away from the processing power avail-
able to customer VMs, and increases the overall cost of
providing cloud services.

Single Root I/O Virtualization (SR-IOV) [4, 5] has been
proposed to reduce CPU utilization by allowing direct ac-
cess to NIC hardware from the VM. However, this di-
rect access would bypass the host SDN stack, making
the NIC responsible for implementing all SDN policies.
Since these policies change rapidly (weeks to months), we
required a solution that could provide software-like pro-
grammability while providing hardware-like performance.

In this paper we present Azure Accelerated Network-
ing (AccelNet), our host SDN stack implemented on the
FPGA-based Azure SmartNIC. AccelNet provides near-
native network performance in a virtualized environment,
offloading packet processing from the host CPU to the
Azure SmartNIC. Building upon the software-based VFP
host SDN platform [6], and the hardware and software in-
frastructure of the Catapult program [7, 8], AccelNet pro-
vides the performance of dedicated hardware, with the
programmability of software running in the hypervisor.
Our goal is to present both our design and our experiences
running AccelNet in production at scale, and lessons we
learned.

2 Background
2.1 Traditional Host Network Processing

In the traditional device sharing model of a virtualized
environment such as the public cloud, all network I/O to
and from a physical device is exclusively performed in the
host software partition of the hypervisor. Every packet

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 51

Figure 1: An SR-IOV NIC with a PF and VFs.

sent and received by a VM is processed by the Virtual
Switch (vSwitch) in the host networking stack. Receiv-
ing packets typically involves the hypervisor copying each
packet into a VM-visible buffer, simulating a soft inter-
rupt to the VM, and then allowing the VM’s OS stack to
continue network processing. Sending packets is similar,
but in the opposite order. Compared to a non-virtualized
environment, this additional host processing: reduces per-
formance, requires additional changes in privilege level,
lowers throughput, increases latency and latency variabil-
ity, and increases host CPU utilization.
2.2 Host SDN

In addition to selling VMs, cloud vendors selling
Infrastructure-as-a-Service (IaaS) have to provide rich net-
work semantics, such as private virtual networks with cus-
tomer supplied address spaces, scalable L4 load balancers,
security groups and ACLs, virtual routing tables, band-
width metering, QoS, and more. These semantics are suf-
ficiently complex and change too frequently that it isn’t
feasible to implement them at scale in traditional switch
hardware. Instead, these are implemented on each host in
the vSwitch. This scales well with the number of servers,
and allows the physical network to be simple, scalable and
very fast.

The Virtual Filtering Platform (VFP) is our cloud-scale
programmable vSwitch, providing scalable SDN policy
for Azure. It is designed to handle the programmabil-
ity needs of Azure’s many SDN applications, providing
a platform for multiple SDN controllers to plumb com-
plex, stateful policy via match-action tables. Details about
VFP and how it implements virtual networks in software
in Azure can be found in [6].
2.3 SR-IOV

Many performance bottlenecks caused by doing packet
processing in the hypervisor can be overcome by using
hardware that supports SR-IOV. SR-IOV-compliant hard-
ware provides a standards-based foundation for efficiently
and securely sharing PCI Express (PCIe) device hardware
among multiple VMs. The host connects to a privileged
physical function (PF), while each virtual machine con-
nects to its own virtual function (VF). A VF is exposed as
a unique hardware device to each VM, allowing the VM
direct access to the actual hardware, yet still isolating VM
data from other VMs. As illustrated in Figure 1 , an SR-
IOV NIC contains an embedded switch to forward packets

to the right VF based on the MAC address. All data pack-
ets flow directly between the VM operating system and
the VF, bypassing the host networking stack entirely. This
provides improved throughput, reduced CPU utilization,
lower latency, and improved scalability.

However, bypassing the hypervisor brings on a new set
of challenges since it also bypasses all host SDN pol-
icy such as that implemented in VFP. Without additional
mechanisms, these important functions cannot be per-
formed as the packets are not processed by the SDN stack
in the host.
2.4 Generic Flow Table Offload

One of AccelNet’s goals was to find a way to make
VFP’s complex policy compatible with SR-IOV. The
mechanism we use in VFP to enforce policy and filtering
in an SR-IOV environment is called Generic Flow Tables
(GFT). GFT is a match-action language that defines trans-
formation and control operations on packets for one spe-
cific network flow. Conceptually, GFT is comprised of a
single large table that has an entry for every active network
flow on a host. GFT flows are defined based on the VFP
unified flows (UF) definition, matching a unique source
and destination L2/L3/L4 tuple, potentially across multi-
ple layers of encapsulation, along with a header transpo-
sition (HT) action specifying how header fields are to be
added/removed/changed.

Whenever the GFT table does not contain an entry for a
network flow (such as when a new network flow is started),
the flow can be vectored to the VFP software running on
the host. VFP then processes all SDN rules for the first
packet of a flow, using a just-in-time flow action compiler
to create stateful exact-match rules for each UF (e.g. each
TCP/UDP flow), and creating a composite action encom-
passing all of the programmed policies for that flow. VFP
then populates the new entry in the GFT table and delivers
the packet for processing.

Once the actions for a flow have been populated in the
GFT table, every subsequent packet will be processed by
the GFT hardware, providing the performance benefits of
SR-IOV, but with full policy and filtering enforcement of
VFP’s software SDN stack.

3 Design Goals and Rationale
We defined the GFT model in 2013-2014, but there are
numerous options for building a complete solution across
hardware and software. We began with the following goals
and constraints as we set out to build hardware offloads for
host SDN:
1. Don’t burn host CPU cores

Azure, like its competitors, sells VMs directly to cus-
tomers as an IaaS offering, and competes on the price of
those VMs. Our profitability in IaaS is the difference be-
tween the price a customer pays for a VM and what it costs
us to host one. Since we have fixed costs per server, the
best way to lower the cost of a VM is to pack more VMs

52 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

onto each host server. Thus, most clouds typically deploy
the largest number of CPU cores reasonably possible at a
given generation of 2-socket (an economical and perfor-
mant standard) blades. At the time of writing this paper,
a physical core (2 hyperthreads) sells for $0.10-0.11/hr1,
or a maximum potential revenue of around $900/yr, and
$4500 over the lifetime of a server (servers typically last
3 to 5 years in our datacenters). Even considering that
some fraction of cores are unsold at any time and that
clouds typically offer customers a discount for commit-
ted capacity purchases, using even one physical core for
host networking is quite expensive compared to dedicated
hardware. Our business fundamentally relies on selling as
many cores per host as possible to customer VMs, and so
we will go to great lengths to minimize host overheads.
Thus, running a high-speed SDN datapath using host CPU
cores should be avoided.

2. Maintain host SDN programmability of VFP
VFP is highly programmable, including a multi-

controller model, stateful flow processing, complex
matching capabilities for large numbers of rules, complex
rule-processing and match actions, and the ability to eas-
ily add new rules. This level of programmability was a key
factor in Azure’s ability to give customers highly config-
urable and feature-rich virtual networks, and enabling in-
novation with new virtual networking features over time.
We did not want to sacrifice this programmability and
flexibility for the performance of SR-IOV — in fact we
wanted SDN controllers to continue targeting VFP with-
out any knowledge that the policy was being offloaded.
This would also maintain compatibility on host servers
that do not have the necessary hardware for AccelNet.

Offloading every rule to hardware is neither feasible nor
desirable, as it would either constrain SDN policy or re-
quire hardware logic to be updated every time a new rule
was created. However, we concluded that offloading all
rules is unnecessary. Most SDN policies do not change
during the duration of the flow. So all policies can be
enforced in VFP software on the first packet of a new
TCP/UDP flow, after which the actions for that flow can
be cached as an exact-match lookup. Even for short flows,
we typically observe at least 7-10 packets including hand-
shakes, so processing only the first packet in software still
allows the majority to be offloaded (if the offload action is
fast and efficient).

3. Achieve the latency, throughput, and utilization of SR-
IOV hardware

Basic SR-IOV NICs set an initial bar for what is pos-
sible with hardware-virtualized networking — bypassing
the host SDN stack and schedulers entirely to achieve
low (and consistent) latency, high throughput, and no host
CPU utilization. Offloading only exact match flows with

1Azure D v3 series or AWS EC2 m4 series instances, with price vary-
ing slightly by region

associated actions allows for a tractable hardware design
with the full performance of a native SR-IOV hardware
solution on all but the first packet of each flow.

4. Support new SDN workloads and primitives over time
VFP continues to evolve, supporting new requirements

and new policies, and AccelNet must be able to evolve
along with VFP. We were, and continue to be, very wary
of designs that locked us into a fixed set of flow actions.
Not only does AccelNet need to support adding/changing
actions, but the underlying platform should allow for new
workloads that don’t map neatly to a single exact-match
table.

5. Rollout new functionality to the entire fleet
A corollary to the previous requirement, the AccelNet

platform needed to enable frequent deployment of new
functionality in the existing hardware fleet, not just on new
servers. Customers should not have to move their exist-
ing deployments to new VM types to enable new features.
Similarly, maintaining the same SDN functionality across
hardware generations makes development, qualification,
and deployment easier for us.

6. Provide high single-connection performance
From our experience with software-based SDN, we

knew that network processing on a single CPU core gen-
erally cannot achieve peak bandwidth at 40Gb and higher.
A good way to scale throughput past the limit of what
one core can process is to break single connections into
multiple parallel connections, utilizing multiple threads to
spread load to multiple cores. However, spreading traffic
across multiple connections requires substantial changes
to customer applications. And even for the apps that im-
plement multiple connections, we saw that many do not
scale well over many flows because flows are often bursty
— apps will dump large messages onto one flow while
others remain idle.

An explicit goal of AccelNet is to allow applications
to achieve near-peak bandwidths without parallelizing the
network processing in their application.

7. Have a path to scale to 100GbE+
We designed AccelNet for a 2015 server generation that

was going to deploy 40GbE widely. But we knew that
the number of cores per server and the networking band-
widths would continue to increase in future generations,
with speeds of 100GbE and above likely in the near fu-
ture. We wanted a SmartNIC design that would continue
to scale efficiently as network speeds and the number of
VMs increase.

8. Retain Serviceability
VFP was designed to be completely serviceable in the

background without losing any flow state, and supports
live migration of all flow state with a VM being migrated.
We wanted our SmartNIC software and hardware stack to
have the same level of serviceability.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 53

4 SmartNIC Hardware Design

4.1 Hardware Options

Based on the above goals, we proceeded to evaluate dif-
ferent hardware designs for our SmartNIC architecture.

Traditionally Microsoft worked with network ASIC
vendors, such as Intel, Mellanox, Broadcom, and others,
to implement offloads for host networking in Windows —
for example TCP checksum and segmentation offloads in
the 1990s [9], Receive-Side Scaling (RSS) [10] and Vir-
tual Machine Queues (VMQ) [11] for multicore scalabil-
ity in the 2000s, and more recently stateless offloads for
NVGRE and VxLAN encapsulation for virtual network-
ing scenarios for Azure in the 2010s [12]. In fact, GFT
was originally designed to be implemented by ASIC ven-
dors as an exact match-action table in conjunction with
SR-IOV, and we shared early design ideas widely in the
industry to see if vendors could meet our requirements.
After time, our enthusiasm for this approach waned as no
designs were emerging that could meet all of the design
goals and constraints laid out in Section 3.

One major problem for SmartNIC vendors is that SR-
IOV is an example of an all-or-nothing offload. If any
needed SDN feature cannot be handled successfully in the
SmartNIC, the SDN stack must revert to sending flows
back through the software-based SDN stack, losing nearly
all of the performance benefit of SR-IOV offload.

We saw four different possible directions emerge:
ASICs, SoCs, FPGAs, and sticking with existing CPUs.

4.1.1 ASIC-based NICs

Custom ASIC designs for SDN processing provide the
highest performance potential. However, they suffer from
a lack of programmability and adaptability over time. In
particular, the long time span between requirement spec-
ifications and the arrival of silicon was on the order of
1-2 years, and in that span requirements continued to
change, making the new silicon already behind the soft-
ware requirements. ASIC designs must continue to pro-
vide all functionality for the 5 year lifespan of a server
(it’s not feasible to retrofit most servers at our scale). All-
or-nothing offloading means that the specifications for an
ASIC design laid out today must meet all the SDN require-
ments for 7 years into the future.

ASIC vendors often add embedded CPU cores to han-
dle new functionality. These cores can quickly become a
performance bottleneck compared to rest of the NIC pro-
cessing hardware. In addition, these cores can be expected
to take an increasing burden of the processing over time as
new functionality is added, exacerbating the performance
bottleneck. These cores are also generally programmed
via firmware updates to the NIC, which is handled by the
ASIC vendors and slows the deployment of new features.

4.1.2 Multicore SoC-based NICs

Multicore SoC-based NICs use a sea of embedded CPU
cores to process packets, trading some performance to
provide substantially better programmability than ASIC
designs. These designs became widely available in the
10GbE NIC generation. Some, like Cavium [13], used
general purpose CPU cores (MIPS, later ARM64), while
others, like Netronome [14] and Tilera, had specific cores
for network processing. Within this space, we much pre-
ferred the general purpose SoCs — based on our evalua-
tion that they were easier to program (you could take stan-
dard DPDK-style code and run it in a familiar Linux en-
vironment). To our surprise, these didn’t have much of a
drawback in performance compared to similar-generation
ASIC designs.

However, at higher network speeds of 40GbE and
above, the number of cores increases significantly. The
on-chip network and schedulers to scatter and gather pack-
ets becomes increasingly complex and inefficient. We saw
often 10 µs or more delays associated with getting packets
into a core, processing the packet, and back out to the net-
work — significantly higher latency than ASICs, and with
significantly more variability. And stateful flows tend to
be mapped to only one core/thread to prevent state shar-
ing and out-of-order processing within a single flow. Thus
individual network flow performance does not improve
much because embedded CPUs are not increasing perfor-
mance at the same pace as network bandwidths. This leads
to the problem of developers having to spread their traffic
across multiple flows, as discussed in Section 3, limiting
the performance advantage of faster networks to only the
most parallel workloads.

The future of SoC-style network offload is also ques-
tionable. At 10GbE, the total package was tolerable,
with a few general purpose SoC cores being sufficient.
40GbE required nearly 4x the cores, though several ven-
dors still created viable solutions. Still, 40GbE parts with
software-based datapaths are already surprisingly large,
power hungry, and expensive, and their scalability for
100GbE, 200GbE, and 400GbE looks bleak.

So while we found that the SoC approach has the ad-
vantage of a familiar programming model, the single-flow
performance, higher latency, and poor scalability at higher
network speeds left us looking for another solution.

4.1.3 FPGAs

Field programmable gate arrays (FPGAs) are reconfig-
urable hardware devices composed of small generic logic
blocks and memories, all connected by a statically config-
ured network. Programmers write code to assemble the
generic logic and memory into ”soft logic” circuits, form-
ing custom application-specific processing engines — bal-
ancing the performance of ASICs with the programmabil-
ity of SoC NICs.

In contrast to CPUs like those on SoC-based NICs, an

54 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 2: Azure SmartNIC boards with Bump-in-the-Wire Architecture

FPGA is programmed only with the essential elements
to complete the application, and can even take advan-
tage of application characteristics such as the maximum
size of the data to reduce bus widths and storage require-
ments. There are many studies that demonstrate FPGA
can accelerate applications several orders of magnitude
over pure software implementations for a wide range of
application spaces from microprocessor simulation [15],
genomics [16], machine learning [17], networking, pattern
matching, graph processing, and so on.

The key characteristics of FPGAs that made it at-
tractive for AccelNet were the programmability to adapt
to new features, the performance and efficiency of cus-
tomized hardware, and the ability to create deep process-
ing pipelines, which improve single-flow performance.

When we evaluated SmartNIC options, Microsoft had
already done the work to deploy FPGAs as datacenter ac-
celerators for project Catapult [7] — we had a success-
ful multi-thousand node cluster of networked FPGAs do-
ing search ranking for Bing, with greatly-improved per-
formance and lowered costs, and with a network transport
layer running between the FPGAs within a rack. This
led us to believe that FPGAs could be a viable option at
scale for SmartNIC, as they had the potential to solve our
dilemma of wanting the performance characteristics of an
ASIC, but the programmability and reconfigurability in-
herent in a software solution like an SoC.

4.1.4 Burn host cores

We still evaluated all options against our original strat-
egy of just using host cores to run our SDN stack, espe-
cially as technologies such as DPDK [18] showed that we
could lower the cost of packet processing significantly by
bypassing the OS networking stack and running cores in
poll-mode. This option beat out ASICs given we couldn’t
get ASICs to meet our programmability requirements, but
the cost and performance overhead of burning cores to our
VM hosting costs was sufficiently high as outlined in Sec-
tion 3 that even the inefficient multicore SoCs were a bet-
ter approach.
4.2 Evaluating FPGAs as SmartNICs

FPGAs seemed like a great option from our initial anal-
ysis, but our host networking group, who had until then
operated entirely as a software group, was initially skepti-
cal — even though FPGAs are widely used in networking

in routers, cellular applications, and appliances, they were
not commonly used as NICs or in datacenter servers, and
the team didn’t have significant experience programming
or using FPGAs in production settings. A number of ques-
tions below had to be answered before we decided to go
down this path:

1. Aren’t FPGAs much bigger than ASICs?
The generic logic portions of FPGAs are roughly 10x-

20x bigger than identical logic in ASICs, since pro-
grammable memories (look up tables, or LUTs) are used
instead of gates, and a programmable network of wires
and muxes are used instead of dedicated wires to connect
components together. If the FPGA design were simply
generic logic, we should expect to need 10-20x more sili-
con area than an ASIC. However, FPGAs have numerous
hardened blocks, such as embedded SRAMs, transceivers,
and I/O protocol blocks, all of which are custom compo-
nents nearly identical to those found in custom ASICs.

Looking at a modern NIC, the packet processing logic
is not generally the largest part. Instead, size is usually
dominated by SRAM memory (e.g. to hold flow contexts
and packet buffers), transceivers to support I/O (40GbE,
50GbE, PCIe Gen3), and logic to drive these interfaces
(MAC+PCS for Ethernet, PCIe controllers, DRAM con-
trollers), all of which can be hard logic on an FPGA
as well. Furthermore, modern ASIC designs often in-
clude significant extra logic and configurability (and even
embedded CPU cores) to accommodate different require-
ments from different customers. This extra logic is needed
to maximize volumes, handle changing requirements, and
address inevitable bugs. Prior work demonstrates that such
configurability can add an order of magnitude of area to
ASIC logic [19]. So the trend has been for FPGAs to in-
clude more and more custom logic, while ASICs include
more and more programmable logic, closing the efficiency
gap between the two alternatives.

In practice, we believe for these applications FPGAs
should be around 2-3x larger than similarly functioned
ASICs, which we feel is reasonable for the massively in-
creased programmability and configurability.

2. Aren’t FPGAs very expensive?
While we cannot disclose vendor pricing publicly, the

FPGA market is competitive (with 2 strong vendors), and
we’re able to purchase at significant volumes at our scale.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 55

In our experience, our scale allows non-recoverable engi-
neering costs to be amortized, and the cost of the silicon
becomes dominated by the silicon area and yield. Total sil-
icon area in a server tends to be dominated by CPUs, flash,
and DRAM, and yields are typically good for FPGAs due
to their regular structure.
3. Aren’t FPGAs hard to program?

This question was the source of the most skepticism
from the host networking team, who were not at the time
in the business of digital logic design or Verilog program-
ming. FPGAs can provide incredible performance com-
pared to a CPU for programmable logic, but only if hard-
ware designers really think through efficient pipeline de-
signs for an application and lay them out as such. The
project was originally assisted by the Catapult team in Mi-
crosoft Research, but eventually we built our own FPGA
team in Azure Networking for SmartNIC. The team is
much smaller than a typical ASIC design team, with the
AccelNet team averaging fewer than 5 FPGA developers
on the project at any given time.

Our experience on AccelNet as well as other projects
within Microsoft, such as Bing Ranking [7, 8] for web
search, LZ77 for data compression [20], and Brain-
Wave [17] for machine learning, demonstrate that pro-
gramming FPGAs is very tractable for production-scale
cloud workloads. The exact same hardware was used in
all four of these applications, showing the programmabil-
ity and flexibility of the Azure SmartNIC expands well
beyond SDN and network processing capabilities. This
bodes well as we seek to add new functionality in years
to come. Investment in strong development teams, infras-
tructure, simulation capabilities, and tools is essential, but
much of this can be shared across different teams.

We have found the most important element to success-
fully programming FPGAs has been to have the hardware
and software teams work together in one group, and use
software development methodologies (e.g. Agile develop-
ment) rather than hardware (e.g. Waterfall) models. The
flexibility of the FPGA allows us to code, deploy, learn,
and revise at a much faster interval than is possible for any
other type of hardware desig. This hardware/software co-
design model is what enables hardware performance with
software-like flexibility.
4. Can FPGAs be deployed at hyperscale?

Getting FPGAs into our data centers was not an easy
effort — when project Catapult started this was just not a
common use case for FPGAs, and the team had to work
through numerous technical, logistical, and team structure
issues. However by the time we began SmartNIC, Cata-
pult had worked out many of the common infrastructure
details that were needed for a hyperscale deployment. The
Catapult shell and associated software libraries abstracted
away underlying hardware-specific details and allowed
both hardware and software development for SmartNIC to
focus largely on application functionality. Though much

of this functionality is now common for FPGA vendors to
support, at the time it wasn’t. This project would not have
been feasible without the prior Catapult work.
5. Isn’t my code locked in to a single FPGA vendor?

Today’s FPGA development is done almost entirely
in hardware description languages like SystemVerilog
(which we use), which are portable if the original devel-
opment was done with the intention to facilitate porting.
There are vendor-specific details, for example Intel FP-
GAs have 40b wide SRAMs versus Xilinx’s 36b SRAMs,
but once such details are accounted for, compiling code
for a different FPGA is not that difficult. As a proof point
of portability, project Catapult was first developed on Xil-
inx FPGAs, but was ported over to Altera FPGAs before
our original pilot.
4.3 SmartNIC System Architecture

Even after selecting FPGAs as the path forward, there
were still major questions about how to integrate it —
where should the FPGA fit in our system architecture for
our first SmartNIC, and which functions should it include?
The original Catapult FPGA accelerator [7] was deliber-
ately not attached the data center network to avoid being a
component that could take down a server, and instead was
connected over an in-rack backend torus network. This
was not ideal for use in SDN offload, since the FPGA
needed to be on the network path to implement VFP func-
tionality.

Another option was to build a full NIC, including SR-
IOV, inside the FPGA — but this would have been a sig-
nificant undertaking (including getting drivers into all our
VM SKUs), and would require us to implement unre-
lated functionality that our currently deployed NICs han-
dle, such as RDMA[14]. Instead we decided to augment
the current NIC functionality with an FPGA, and initially
focus FPGA development only on the features needed for
offload of SDN.

The converged architecture places the FPGA as a bump-
in-the-wire between the NIC and the Top of Rack (TOR)
switch, making the FPGA a filter on the network. A cable
connects the NIC to the FPGA and another cable connects
the FPGA to the TOR. The FPGA is also connected by
2 Gen3x8 PCIe connections to the CPUs, useful for ac-
celerator workloads like AI and web search. When used
as an accelerator, the network connection (along with an
RDMA-like lossless transport layer using DCQCN [21])
allows scaling to workloads such as large DNN models
that don’t fit on one chip. The resulting first generation
Azure SmartNIC, deployed in all Azure compute servers
beginning in 2015, is shown in Figure 2(a).

The second generation of SmartNIC, running at 50GbE,
Figure 2(b), is designed for the Azure Project Olympus
OCP servers [22]. We integrated a standard NIC with SR-
IOV on the same board as the FPGA, keeping the same
bump-in-the-wire architecture, but eliminating the sepa-
rate NIC board and the cable between the NIC and the

56 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

FPGA, reducing cost, and upgrading to a newer Intel Ar-
ria 10 FPGA.

5 AccelNet System Design
The control plane for AccelNet is largely unchanged from
the original VFP design in [6], and remains almost entirely
in the hypervisor. It remains responsible for the creation
and deletion of flows from the flow table, along with de-
termining the associated policy for each flow. The data
plane for AccelNet is offloaded to the FPGA SmartNIC.
The driver for the NIC is augmented with a filter driver
called the GFT Lightweight Filter (LWF), which abstracts
the details of the split NIC/FPGA hardware from VFP to
make the SmartNIC appear as a single NIC with both full
SR-IOV and GFT support, and to help in serviceability, as
discussed in detail in Section 7.1.
5.1 Software Design

While the vast majority of the packet processing work-
load for GFT falls onto the FPGA hardware, software
remains responsible for control operations, including the
setup/teardown of flows, health monitoring, and enabling
serviceability so that flows can continue during updates to
VMs and the FPGA hardware. A high-level view of our
architecture is shown in Figure 3. The flow table may not
contain a matching rule for a given packet. In these cases,
the offload hardware will send the packet to the software
layer as an Exception Packet. Exception packets are most
common on the first packet of a network flow, when the
flow is just getting established.

A special virtual port (vPort) dedicated to the hypervi-
sor is established for exception packets. When the FPGA
receives an exception packet, it overloads the 802.1Q
VLAN ID tag in the packet to specify that it is an ex-
ception path packet, and forwards the packet to the hy-
pervisor vPort. VFP monitors this port and performs the
necessary flow creation tasks after determining the appro-
priate policy for the packet’s flow. If the exception packet
was destined for a VM on the same host, the VFP software
can deliver the packet directly to the VM. If the exception
packet was outbound (sent by a VM for a remote desti-
nation), then the VFP software must resend the packet to
the SmartNIC, which it can do using the same dedicated
hypervisor vPort.

VFP also needs to be aware of terminated connections
so that stale connection rules do not match to new net-
work flows. When the FPGA detects termination packets
such as TCP packets with SYN, RST or FIN flag set, it
duplicates the packet — sending the original packet to its
specified destination, and an identical copy of the packet
to the dedicated hypervisor vPort. VFP uses this packet to
track TCP state and delete rules from the flow table.
5.2 FPGA Pipeline Design

The GFT datapath design was implemented on the
Azure SmartNIC hardware described in 4.3. For the re-
mainder of this section we focus on the implementation

Figure 3: The SmartNIC GFT architecture, showing the
flow of exception packets from the FPGA to software to
establish a flow offloaded in hardware

on SmartNIC Gen1, though the same structure (with dif-
ferent values) applies to Gen2.

The design of the GFT implementation on FPGA can
be divided into 2 deeply pipelined packet processing units,
each comprised of four major pipeline stages: (1) a store
and forward packet buffer, (2) a parser, (3) a flow lookup
and match, and (4) a flow action. A high-level view of our
system architecture is shown in Figure 4.

The Parser stage parses the aggregated header informa-
tion from each packet to determine its encapsulation type.
We currently support parsing and acting on up to 3 groups
of L2/L3/L4 headers (9 headers total, and 310 possible
combinatons). The output of the parser is a key that is
unique for each network flow.

The third processing stage is Match, which looks up
the rules for the packet based on the unique key from the
Parser stage. Matching computes the Toeplitz hash [23] of
the key, and uses that as the cache index. We use a 2-level
caching system with an L1 cache stored on-chip, and an
L2 cache stored in FPGA-attached private DRAM.

The L1 cache is structured as a direct-mapped cache
supporting 2,048 flows. We experimented with 2-
way set associative caches and simpler hash algo-
rithms than the Toeplitz hash [24], but found that the
more computationally-intensive but less collision-prone
Toeplitz hash coupled with the simpler direct-mapped

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 57

Figure 4: Block diagram of the GFT processing pipeline

cache resulted in better overall performance.
The L2 cache is structured as an 8-way set-associative

cache, with support for O(1M) flows. Total number of
supported flows is limited only by the DRAM capacity.

The final component is the Action stage, which takes
the parameters looked up from the flow table, and then per-
forms the specified transformations on the packet header.
The Action block uses microcode to specify the exact be-
haviors of actions, enabling easy updates to actions with-
out recompilation of the FPGA image. Only when entirely
new actions are added will the FPGA need to be recom-
piled and a new bitstream loaded.

Non-trivial software-programmable Quality-of-Service
guarantees can be implemented as optional components of
the processing pipeline. For example, rate limiting can be
done on a per-flow basis using a packet buffer in DRAM.
Full description of our QoS frameworks and actions is be-
yond the scope of this paper. In total, the GFT role uses
about 1/3 of the logic of the Intel Stratix V D5 chip that
we used in the Gen1 SmartNICs.
5.3 Flow tracking and reconciliation

VFP is used by overlying controllers and monitoring
layers to track per-flow connection state and data. GFT
keeps track of all per-connection byte/flow counters, such
as TCP sequence/ack numbers and connection state, and
timestamps of the last time a flow got a packet. It period-
ically transmits all flow state to VFP via DMA transfers
over PCIe, allowing VFP to ensure proper flow configura-
tions, and to perform actions such as the cleanup of inac-
tive flows.

GFT must also perform reconciliation so that flow ac-
tions get updated when VFP policy changes. Like VFP’s
unified flow table, GFT maintains a generation ID of the
policy state on a system, and tracks what the generation ID
when the rules for each flow were created. When a con-
troller plumbs new policy to VFP, the generation ID on
SmartNIC is incremented. Flows are then updated lazily
by marking the first packet of each flow as an exception
packet, and having VFP update the flow with the new pol-
icy actions.

6 Performance Results
Azure Accelerated Networking has been available since
2016. Performance results are measured on normal Azure

AccelNet VMs in an Azure datacenter, running on In-
tel Xeon E5-2673 v4 (Broadwell at 2.3 Ghz) CPUs with
40Gbps Gen1 SmartNICs. Sender and receiver VMs are
in the same datacenter and cross a Clos network of 5 stan-
dard switching ASICs between each other. We created no
special configuration and the results, in Figure 5, should be
reproduceable by any Azure customer using large Dv2 or
Dv3 series Azure VMs. VFP policy applied to these VMs
includes network virtualization, stateful NAT and stateful
ACLs, metering, QoS, and more.

We measure one-way latency between two Windows
Server 2016 VMs using registered I/O sockets [25] by
sending 1 million 4-byte pings sequentially over active
TCP connections and measuring response time. With our
tuned software stack without AccelNet, we see an aver-
age of 50µs, with a P99 around 100µs and P99.9 around
300µs. With AccelNet, our average is 17µs with P99 of
25µs and P99.9 of 80µs — both latency and variance are
much lower.

Azure offers VM sizes with up to 32Gbps of network
capacity. With pairs of both Ubuntu 16.04 VMs and Win-
dows 10 VMs with TCP congestion control set to CU-
BIC [26] and a 1500 Byte MTU, we consistently measure
31Gbps on a single connection between VMs with 0% as-
sociated CPU utilization in the host. Without AccelNet
we see around 5Gbps on a single connection and multiple
cores utilized in the host with enough connections run-
ning (∼8) to achieve line rate. Because we don’t have to
scale across multiple cores, we believe we can scale sin-
gle connection performance to 50/100Gb line rate using
our current architecture as we continue to increase net-
work speeds with ever-larger VMs.

For an example of a real world application, we deployed
AccelNet to our Azure SQL DB fleet, which runs in VM
instances, and ran SQL queries from an AccelNet VM in
the same DC against an in-memory DB replicated across
multiple nodes for high availability (both reads and writes
to the service traverse multiple network hops). Average
end-to-end read times went from ∼1ms to ∼300µs, and
P99 read and write times dropped by over half as a result
of reduced jitter in the network. Replication and seeding
jobs that were often bound by the performance of a burst
on a single connection ran over 2x faster.

Figure 6 shows comparative performance of AccelNet
compared to other public cloud offerings that we mea-
sured on latest generation Intel Skylake-based instances
(Fs72 v2 on Azure, c5.18xlarge on AWS, n1-highcpu-64
on GCP, measured in November 2017). All tests used un-
modified Ubuntu 16.04 images provided by the platform
with busy poll enabled. We used the open source tools
sockperf and iperf to measure latency and through-
put, respectively. In our measurements, AccelNet had the
lowest latencies, highest throughput, and lowest tail laten-
cies (measured as percentiles of all pings over multiple
10-second runs of continuous ping-pong on established

58 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 5: Selected performance data from Azure AccelNet VMs

TCP connections) of the instances we measured, includ-
ing a consistent 10µs average latency between our Linux
VMs. To test the performance of userspace I/O such as
DPDK, we used a userspace TCP stack based on the open
source VMA library [27], which achieved about 5µs la-
tency pinging standard TCP sockets between our produc-
tion VMs.

VFP is widely used in our fleet to run software gate-
ways bridging between our SDN and external networks,
such as ExpressRoute [28] circuits to customer datacen-
ters. We used the programmable forwarding and QoS in
our FPGA GFT implementation to offload all forward-
ing (after first packet on a flow) to the SmartNIC. Includ-
ing encap/decap, stateful ACLs/NAT and metering, QoS,
and forwarding, we saw a gateway forwarding line-rate
32Gbps traffic (even with just one flow), and consistent
<5s latency with 0% host CPU utilization. Our prior gate-
way required multiple connections to hit line rate, burned
CPU cores, and could spike to 100-200µs latency (in-
cluding going to and from a VM) depending on system
scheduling behavior. We believe this platform will let us
create many more accelerated programmable appliances.

Using configurable power regulators on our SmartNIC,
we’ve measured the power draw of our Gen1 board in-
cluding all components in operational servers at 17-19W
depending on traffic load. This is well below the 25W
power allowed for a typical PCIe expansion slot, and on
par with or less than other SmartNIC designs we’ve seen.

7 Operationalization
7.1 Serviceability

As with any other feature that is being built for the pub-
lic cloud, serviceability, diagnostics and monitoring are
key aspects of accelerated networking. The fact that both
software and hardware are serviceable makes this particu-
lar scenario deployable for us. As discussed in [6], VFP is
already fully serviceable while keeping existing TCP con-
nections alive, and supports VM live migration with exist-
ing connections. With AccelNet, we needed to extend this
serviceability as well — TCP flows and vNICs should sur-
vive FPGA reconfiguration, FPGA driver updates, NIC PF
driver updates (which bring down VFs), and GFT driver
updates.

We accomplished online serviceability by turning off
hardware acceleration and switching back to synthetic
vNICs to maintain connectivity when we want to ser-
vice the SmartNICs or the software components that drive
them, or when live migrating a VM. However, since Ac-
celNet is exposed directly into the VM in the form of
VFs, we must ensure that none of the applications break
when the VF is revoked and the datapath is switched to
synthetic mode. To satisfy this requirement, we do not
expose the VF to the upper protocol stack in the VM di-
rectly. Instead, when the VF comes up, our synthetic NIC
driver, the Hyper-V Network Virtual Service Consumer
(NetVSC), marks the VF as its slave, either by using the
slave mode present in the kernel for Linux VMs, or by
binding to the NetVSC’s upper NDIS edge in Windows
VMs. We call this transparent bonding — the TCP/IP
stack is bound only to the synthetic NIC. When VF is ac-
tive, the synthetic adapter automatically issues sends over
the VF adapter rather than sending it through the synthetic
path to the host. For receives, the synthetic adapter for-
wards all receives from both the VF and synthetic path up
the stack. When the VF is revoked for servicing, all trans-
mit traffic switches to the synthetic path automatically, and
the upper stack is not even aware of the VF’s revocation
or later reassignment. Figure 7 shows the accelerated data
path and synthetic data path. The network stack is com-
pletely transparent to the current data path since NetVSC
provides transparent bonding.

One of the benefits of SR-IOV is that VMs can use ker-
nel bypass techniques like DPDK (Data Plane Develop-
ment Kit) [18] or RDMA (Remote Direct Memory Ac-
cess) to directly interface with hardware via the VF, but
we needed to consider serviceability for them too when
the VF is revoked, and the VM is potentially live-migrated
elsewhere. We needed these applications to transparently
fall back to a non-accelerated code path for that brief time
period.

We found that there is no built-in fallback mechanism
for many DPDK applications. So, we use a failsafe PMD
(Poll Mode Driver) which acts as a bond between the VF
PMD and a PMD on the synthetic interface. When the
VF is active, the failsafe PMD operates over the VF PMD,
thereby bypassing the VM kernel and the host software
stack. When the VF is revoked for serviceability, the

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 59

Figure 6: Performance of AccelNet VM-VM latencies vs. Amazon AWS Enhanced Networking and Google GCP An-
dromeda on Intel Skylake generation hardware.

Synthetic data path Accelerated data path Transparent

Figure 7: Transparent bonding between an SR-IOV inter-
face and a synthetic interface

failsafe PMD starts operating over the synthetic path and
packets flow through the VMBUS channels. Since the fail-
safe PMD exposes all DPDK APIs, the application does
not see any difference except for a drop in performance
for a short period of time.

For RDMA applications, this form of serviceability is
harder and potentially involves many more queues. In
practice, we found all our common RDMA applications
are designed to gracefully fall back to TCP anyways, so
we issue completions closing all RDMA queue pairs and
let the app fail over to TCP. This isn’t an issue for currently
known workloads, but app-level transparency for RDMA
serviceability remains an open question for the future if
apps ever take a hard dependency on RDMA QPs staying
alive.

Support for transparent VF bonding has been commit-
ted upstream in the Linux kernel (for NetVSC) and to
dpdk.org for DPDK, and is natively available in Windows
Server 2012 and later VMs. We’ve issued regular fleet-
wide updates to all parts of the AccelNet stack, (VFP
through GFT, the FPGA, and the PF driver), and found
that transparent bonding works well in practice for our
customers. While there is a short performance degrada-
tion while the synthetic path is active, apps stay alive and
handle this well as they don’t see a change in the network
adapter they’re bound to, or on active TCP connections. If
an application is sensitive to this, we let VMs subscribe to
an instance metadata service that sends notifications about

upcoming maintenance and update events to the VM to
enable it to prepare or move traffic elsewhere. If a VM is
running behind the Azure load balancer, we can remove it
from the active load balanced set during an update so that
new external TCP/UDP flows are directed elsewhere for
the duration of the update window.

7.2 Monitoring and Diagnostics
Monitoring is key to the reliability of a system like Ac-

celNet at scale. Detection of early warning signs from
both hardware and software and correcting them in an au-
tomated fashion is necessary to achieve production-quality
reliability. We collect metrics from each component of
AccelNet, including VFP, GFT, the SmartNIC and its
driver, and the SR-IOV NIC and its driver — we have
over 500 metrics per host (of which many are per-VM)
collected in our scalable central monitoring system. Alerts
and actions are triggered by combinations of these and we
are constantly tweaking thresholds and actions as we get
more experience and data over time with the system.

For diagnostics, we built programmable packet capture
and tracing services at every interface on the SmartNIC —
packet headers and data can be sampled at NIC/ToR ports
on ingress/egress. We built a metadata interface along the
network bus inside SmartNIC so that any module can emit
diagnostic data about what exactly happened to a packet at
that module, which is included in the capture. For exam-
ple, in GFT we can trace how a packet was parsed, what
flow it matched, what action it took, etc. We can collect
hardware timestamps for these for accurate latency anal-
ysis. We also expose diagnostic information on key state
machines as well as extensive counters, and automatically
dump all critical internal state on an error.

8 Experiences
Azure SmartNICs and AccelNet have been deployed at
scale for multiple years, with hundreds of thousands of
customer VMs across our fleet. In our experience, Accel-
Net has improved network performance across the board
for our customers without negatively impacting reliabil-
ity or serviceability, and offering better throughput and
latency than anything else we’ve measured in the public

60 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

cloud. We believe our design accomplished all the goals
we set out in Section 3 :

1. We stopped burning CPU cores to run the network
datapath for AccelNet VMs. Host cores show less
than 1% utilization used for exception processing.

2. SDN controllers have continued to add and program
new policy in VFP, agnostic of the hardware offload
now underneath.

3. We measured the overhead of the FPGA on latency
as <1µs vs our SR-IOV NIC alone, and achieve line
rate. This is much better than CPU cores alone.

4. We’ve continued to add new actions and primitives to
GFT on the FPGA to support new workloads, as well
as new QoS primitives and more.

5. Changes have been rolled out across multiple types
of servers and SmartNIC hardware.

6. We can achieve line rate on a single connection.
7. We believe our design scales well to 100Gb+.
8. We have done production servicing of our FPGA im-

age and drivers regularly for years, without nega-
tively impacting VMs or applications.

8.1 Are FPGAs Datacenter-Ready?
One question we are often asked is if FPGAs are ready

to serve as SmartNICs more broadly outside Microsoft.
We certainly do not claim that FPGAs are always the best
and only solution for accelerating networking in all cloud
environments. The development effort for FPGA pro-
gramming is certainly higher than software — though can
be made quite tractable and agile with a talented hardware
team and support from multiple stakeholders.

When Microsoft started Catapult, FPGAs were far from
cloud-ready. Because SmartNIC shares a common devel-
opment environment and history with Catapult, much of
the development effort was shared across teams. We’ve
observed that necessary tooling, basic IP blocks, and gen-
eral support have dramatically improved over the last few
years. But this would still be a daunting task for a new
team. We didn’t find that the higher level languages for
FPGAs we experimented with produced efficient results
for our designs, but our trained hardware developers had
no trouble rapidly iterating on our SystemVerilog code.

The scale of Azure is large enough to justify the mas-
sive development efforts — we achieved a level of perfor-
mance and efficiency simply not possible with CPUs, and
programmability far beyond an ASIC, at a cost that was
reasonable because of our volume. But we don’t expect
this to be a natural choice for anyone beyond a large-scale
cloud vendor until the ecosystem evolves further.

8.2 Changes Made
As we expected, we continued adding all kinds of ac-

tions over time as the SDN stack evolved that we could
never have predicted when we started, such as new stateful
tunneling modes and state tracking. We believe respond-
ing to these rapidly shifting requirements would never

have worked in an ASIC development flow. A small se-
lection of examples include:
• We’ve repeatedly extended our TCP state machine with

more precise seq/ack tracking of every TCP flow in our
system for various functional and diagnostic purposes.
For example, an ask to inject TCP resets into active
flows based on idle timeouts and other parameters ne-
cessitated VFP being aware of the latest valid sequence
numbers of every flow.

• We created a number of new packet forwarding and du-
plication actions, for example supporting tap interfaces
with their own encapsulation and SDN policy, complex
forwarding actions for offloading gateways and soft-
ware routers to hardware, and multicast semantics using
fast hardware replication on a unicast underlay.

• We added SDN actions such as NAT46 with custom
translation logic for our internal workloads, support for
virtualizing RDMA, and new overlay header formats.

• As we saw pressure to improve connection setup per-
formance, we repeatedly iterated on our offload path,
moving many functions such as hashing and table in-
sertion of flows from software into hardware over time
based on production telemetry.

• We’ve used the FPGAs to add constant new datapath
diagnostics at line rate, including programmable packet
captures, packet tracing through stages in our FPGA for
latency and correctness analysis, and extensive counters
and telemetry of the kind that require support in hard-
ware in the datapath. This is our most constant source
of iteration.

8.3 Lessons Learned
Since beginning the Azure Accelerated Networking

project, we learned a number of other lessons of value:
• Design for serviceability upfront. The topics in Sec-

tion 7 were the hardest of anything here to get right.
They worked only because the entire system, from hard-
ware to software to VM integration, were designed to be
serviceable and monitorable from day 1. Serviceability
cannot be bolted on later.

• Use a unified development team. If you want Hard-
ware/Software co-design, hardware devs should in the
same team as software devs. We explicitly built our
hardware team inside the existing Azure host network-
ing group, rather than the traditional approach of having
separate groups for HW and SW, to encourage frequent
collaboration and knowledge sharing.

• Use software development techniques for FPGAs.
One thing that helped our agility was viewing the host
networking datapath stack as a single stack and ship
vehicle across VFP and FPGA, reducing complex roll-
out dependencies and schedule mismatch. As much as
possible, we treated and shipped hardware logic as if
it was software. Going through iterative rings of soft-
ware qualification meant we didn’t need ASIC-levels of
specification and verification up front and we could be

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 61

more agile. A few minutes in a live environment cov-
ers far more time and more scenarios than typical RTL
verification flows could ever hope to cover.

• Better perf means better reliability. One of the
biggest benefits of AccelNet for VMs is that the net-
work datapath no longer shares cores or resources with
the rest of the host, and is not subject to transient is-
sues — we’ve seen much more reliable performance
and lower variance as a result.

• HW/SW co-design is best when iterative. ASIC de-
velopment traditionally means designing a specification
and test methodology for everything that a system could
possibly want to do over its lifetime upfront. FPGAs
allowed our hardware developers to be far more agile
in their approach. We can deploy designs directly to
customers, collect data from real workloads with de-
tailed counters, and use those to decide what functions
should be in hardware vs. software in the next release,
and where performance bottlenecks are. More impor-
tantly, we can allow the specifications to evolve con-
stantly throughout the development process. For exam-
ple, we changed the hashing and caching strategies sev-
eral times after the initial release.

• Failure rates remain low, and were in line with other
passive parts in the system, with the most frequently
failing part being DRAM. Overall the FPGAs were re-
liable in datacenters worldwide.

• Upper layers should be agnostic of offloads. Because
VFP abstracted out whether SDN policy was being of-
floaded or not from controllers and upper layers, Accel-
Net was much less disruptive to deploy.

• Mitigating Spectre performance impact. In the
wake of the Meltdown and Spectre attacks on our
CPUs, CPU-based I/O was impacted by common miti-
gations [29]. Because AccelNet bypasses the host and
CPUs entirely, our AccelNet customers saw signifi-
cantly less impact to network performance, and many
redeployed older tenants to AccelNet-capable hardware
just to avoid these impacts.

9 Related Work
Since we first deployed Azure SmartNICs and announced
them at the Open Networking Summit in 2015, we’ve seen
numerous different programmable NIC solutions with
vSwitch offload come to market (recently many of these
are labeled as “Smart NICs” too). Most follow the trends
we discussed in 4.1. Some [30] are based on ASICs with
internal match-action tables — these tend to not be very
flexible or support some of the more advanced actions
we’ve implemented over time in GFT, and give little room
for growth as actions and policy change. Others [13, 14]
do datapath processing entirely in embedded cores, either
general purpose CPUs or network-specific ones, but we’ve
found the performance of this model is not great and we
don’t see a path to scale this to 100G and beyond with-

out requiring many cores. A newer trend is to combine
an ASIC supporting some match-action function with a
small SoC supporting a DPDK-style datapath for on-core
packet processing. But we don’t ultimately see that this
solves the dilemma of ASICs vs CPUs — if you have
a widely-applied action that the ASIC can’t handle, you
have to send all your packets up to the CPUs, and now
your CPUs have to handle line rate processing.

Others [31] show that they can improve the performance
of software stacks entirely in the host and suggest burning
cores to do host SDN. While we believe this in practice re-
quires multiple cores at line rate for our workloads, in IaaS
even taking a very small number of cores is too costly for
this to make sense for us, and the performance and latency
aren’t optimal. With FPGAs, we’ve found we’re able to
achieve sufficient programmability and agility in practice.
Offloading functionality to the switches as in [32] was also
explored, but since we have to store complex actions for
every TCP connection in our system, and with the increase
of VM and container density on a node, we found the min
set of policy needed to be offloaded, even when reasonably
compressed, is at least 2 orders of magnitude more than
even the latest programmable switch ASICs can store in
SRAM - at NIC speeds we can scale out to GBs of DRAM.

Another recent suggestion is to use P4 engines [33],
thus far mostly implemented in switches, to create Smart-
NICs. The P4 specification offers flexible parsing and
relatively flexible actions, many of which are similar to
GFT. In fact, P4 could potentially serve as a way to spec-
ify some of the GFT processing flow. However, there are
other SDN functions outside the scope of existing P4 en-
gines and even the P4 language specification that are im-
portant for us to implement in AccelNet — functions such
as scheduling, QoS, background state updates, any kind
of programmable transport layer, and a variety of com-
plex policies outside the scope of simple packet transfor-
mations. While we expect the P4 language to be extended
to include many of these, using a programmable fabric like
an FPGA to implement GFT or P4 functionality remains
a good choice given the evolving nature of the SDN and
cloud space. We expect much of the functionality outside
of the core packet processor to harden over time, but ex-
pect SDN to remain soft for the foreseeable future.

10 Conclusion and Future Work
We detailed the Azure SmartNIC, our FPGA-based pro-
grammable NIC, as well as Accelerated Networking, our
service for high performance networking providing cloud-
leading network performance, and described our experi-
ences building and deploying them.

This paper describes primarily functions we were al-
ready doing in software in host SDN and offloaded to
hardware for great performance. Future work will de-
scribe entirely new functionality we’ve found we can sup-
port now that we have programmable NICs on every host.

62 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Acknowledgements
We thank our shepherd Arvind Krishnamurthy and the

anonymous reviewers for their many helpful comments
that greatly improved the final paper.

Azure Accelerated Networking represents the work of
many engineers, architects, product managers, and leaders
across Azure and Microsoft Research over several years,
more than we can list here. We thank the entire Azure
Networking, Server Infrastructure, and Compute teams for
their support in developing, iterating on, and deploying
SmartNICs and the Accelerated Networking service.

We thank Parveen Patel, Pankaj Garg, Peter Carlin,
Tomas Talius, Jurgen Thomas, and Hemant Kumar for
their invaluable early feedback in deploying preview ver-
sions of our service, and KY Srinivasan, Stephen Hem-
minger, Josh Poulson, Simon Xiao, and Haiyang Zhang
for supporting our Linux VM ecosystem’s move to Accel-
Net. Finally, in addition to our leaders in the author list,
we thank Yousef Khalidi, Mark Russinovich, and Jason
Zander for their support.

References
[1] Microsoft Azure. http://azure.microsoft.com, 2018.

[2] Amazon. Amazon Web Services. http://aws.amazon.com,
2018.

[3] Google. Google Cloud Platform. http://cloud.google.com,
2018.

[4] Microsoft. Overview of Single Root I/O Virtualiza-
tion (SR-IOV). https://msdn.microsoft.com/en-

us/windows/hardware/drivers/network/overview-

of-single-root-i-o-virtualization--sr-iov-, Apr
2017.

[5] Y. Dong, X. Yang, X. Li, J. Li, K. Tian, and H. Guan. High
performance network virtualization with sr-iov. In HPCA - 16
2010 The Sixteenth International Symposium on High-Performance
Computer Architecture, pages 1–10, Jan 2010.

[6] Daniel Firestone. VFP: A virtual switch platform for host SDN
in the public cloud. In 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 17), pages 315–328,
Boston, MA, 2017. USENIX Association.

[7] Andrew Putnam, Adrian M. Caulfield, Eric S. Chung, Derek Chiou,
Kypros Constantinides, John Demme, Hadi Esmaeilzadeh, Jeremy
Fowers, Jan Gray, Michael Haselman, Scott Hauck, Stephen
Heil, Amir Hormati, Joo-Young Kim, Sitaram Lanka, James R.
Larus, Eric Peterson, Gopi Prashanth, Aaron Smith, Jason Thong,
Phillip Yi Xiao, and Doug Burger. A Reconfigurable Fabric for Ac-
celerating Large-Scale Datacenter Services. In International Sym-
posium on Computer Architecture (ISCA), 2014.

[8] A. M. Caulfield, E. S. Chung, A. Putnam, H. Angepat, J. Fowers,
M. Haselman, S. Heil, M. Humphrey, P. Kaur, J. Y. Kim, D. Lo,
T. Massengill, K. Ovtcharov, M. Papamichael, L. Woods, S. Lanka,
D. Chiou, and D. Burger. A cloud-scale acceleration architecture.
In 2016 49th Annual IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO), pages 1–13, Oct 2016.

[9] Microsoft. TCP/IP Offload. https://docs.microsoft.com/

en-us/windows-hardware/drivers/network/tcp-ip-

offload, Apr 2017.

[10] Microsoft. Introduction to Receive Side Scaling.
https://docs.microsoft.com/en-us/windows-

hardware/drivers/network/introduction-to-receive-

side-scaling, Apr 2017.

[11] Microsoft. Virtual Machine Queue (VMQ). https:

//msdn.microsoft.com/en-us/windows/hardware/

drivers/network/virtual-machine-queue--vmq-, Apr
2017.

[12] Microsoft. Network Virtualization using Generic Routing
Encapsulation (NVGRE) Task Offload. https://docs.

microsoft.com/en-us/windows-hardware/drivers/

network/network-virtualization-using-generic-

routing-encapsulation--nvgre--task-offload, Apr
2017.

[13] Cavium. Cavium LiquidIO II Network Appliance Smart
NICs. http://www.cavium.com/LiquidIO-II_Network_

Appliance_Adapters.html.

[14] Netronome. Open vSwitch Offload and Acceleration with Ag-
ilio CX SmartNICs. https://www.netronome.com/media/

redactor_files/WP_OVS_Benchmarking.pdf.

[15] Derek Chiou, Dam Sunwoo, Joonsoo Kim, Nikhil A. Patil, William
Reinhart, Darrel Eric Johnson, Jebediah Keefe, and Hari Angepat.
Fpga-accelerated simulation technologies (fast): Fast, full-system,
cycle-accurate simulators. In Proceedings of the 40th Annual
IEEE/ACM International Symposium on Microarchitecture, MI-
CRO 40, pages 249–261, Washington, DC, USA, 2007. IEEE
Computer Society.

[16] Yatish Turakhia, Kevin Jie Zheng, Gill Bejerano, and William J.
Dally. Darwin: A hardware-acceleration framework for genomic
sequence alignment. bioRxiv, 2017.

[17] Eric Chung, Jeremy Fowers, Kalin Ovtcharov, Michael Pa-
pamichael, Adrian Caulfield, Todd Massengil, Ming Liu, Daniel
Lo, Shlomi Alkalay, Michael Haselman, Christian Boehn, Oren
Firestein, Alessandro Forin, Kang Su Gatlin, Mahdi Ghandi,
Stephen Heil, Kyle Holohan, Tamas Juhasz, Ratna Kumar Kovvuri,
Sitaram Lanka, Friedel van Megen, Dima Mukhortov, Prerak Patel,
Steve Reinhardt, Adam Sapek, Raja Seera, Balaji Sridharan, Lisa
Woods, Phillip Yi-Xiao, Ritchie Zhao, and Doug Burger. Acceler-
ating Persistent Neural Networks at Datacenter Scale. In Hot Chips
27, 2017.

[18] DPDK. DPDK: Data Plane Development Kit. http://dpdk.

org/about, 2018.

[19] Gokhan Sayilar and Derek Chiou. Cryptoraptor: High throughput
reconfigurable cryptographic processor. In Proceedings of the 2014
IEEE/ACM International Conference on Computer-Aided Design,
ICCAD ’14, pages 154–161, Piscataway, NJ, USA, 2014. IEEE
Press.

[20] J. Fowers, J. Y. Kim, D. Burger, and S. Hauck. A scalable
high-bandwidth architecture for lossless compression on fpgas.
In 2015 IEEE 23rd Annual International Symposium on Field-
Programmable Custom Computing Machines, pages 52–59, May
2015.

[21] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Ma-
rina Lipshteyn, Yehonatan Liron, Jitendra Padhye, Shachar Rain-
del, Mohamad Haj Yahia, and Ming Zhang. Congestion control
for large-scale rdma deployments. In Proceedings of the 2015
ACM Conference on Special Interest Group on Data Communica-
tion, SIGCOMM ’15, pages 523–536, New York, NY, USA, 2015.
ACM.

[22] Microsoft. Server/ProjectOlympus. www.opencompute.org/

wiki/Server/ProjectOlympus, 2018.

[23] P. P. Deepthi and P. S. Sathidevi. Design, implementation and anal-
ysis of hardware efficient stream ciphers using lfsr based hash func-
tions. Comput. Secur., 28(3-4):229–241, May 2009.

[24] Microsoft. RSS Hashing Functions. https://docs.microsoft.
com/en-us/windows-hardware/drivers/network/rss-

hashing-functions, Apr 2017.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 63

http://azure.microsoft.com
http://aws.amazon.com
http://cloud.google.com
https://msdn.microsoft.com/en-us/windows/hardware/drivers/network/overview-of-single-root-i-o-virtualization--sr-iov-
https://msdn.microsoft.com/en-us/windows/hardware/drivers/network/overview-of-single-root-i-o-virtualization--sr-iov-
https://msdn.microsoft.com/en-us/windows/hardware/drivers/network/overview-of-single-root-i-o-virtualization--sr-iov-
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/tcp-ip-offload
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/tcp-ip-offload
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/tcp-ip-offload
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/introduction-to-receive-side-scaling
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/introduction-to-receive-side-scaling
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/introduction-to-receive-side-scaling
https://msdn.microsoft.com/en-us/windows/hardware/drivers/network/virtual-machine-queue--vmq-
https://msdn.microsoft.com/en-us/windows/hardware/drivers/network/virtual-machine-queue--vmq-
https://msdn.microsoft.com/en-us/windows/hardware/drivers/network/virtual-machine-queue--vmq-
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/network-virtualization-using-generic-routing-encapsulation--nvgre--task-offload
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/network-virtualization-using-generic-routing-encapsulation--nvgre--task-offload
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/network-virtualization-using-generic-routing-encapsulation--nvgre--task-offload
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/network-virtualization-using-generic-routing-encapsulation--nvgre--task-offload
http://www.cavium.com/LiquidIO-II_Network_Appliance_Adapters.html
http://www.cavium.com/LiquidIO-II_Network_Appliance_Adapters.html
https://www.netronome.com/media/redactor_files/WP_OVS_Benchmarking.pdf
https://www.netronome.com/media/redactor_files/WP_OVS_Benchmarking.pdf
http://dpdk.org/about
http://dpdk.org/about
www.opencompute.org/wiki/Server/ProjectOlympus
www.opencompute.org/wiki/Server/ProjectOlympus
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/rss-hashing-functions
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/rss-hashing-functions
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/rss-hashing-functions

[25] Microsoft. Registered Input/Output (RIO) API Ex-
tensions. https://technet.microsoft.com/en-

us/library/hh997032(v=ws.11).aspx, Aug 2016.

[26] Injong Rhee, Lisong Xu, Sangtae Ha, Alexander Zimmermann,
Lars Eggert, and Richard Scheffenegger. CUBIC for Fast Long-
Distance Networks. RFC 8312, February 2018.

[27] Messaging Accelerator (VMA). https://github.com/

Mellanox/libvma, 2018.

[28] Microsoft. ExpressRoute overview. https://docs.microsoft.
com/en-us/azure/expressroute/expressroute-

introduction, Oct 2017.

[29] Microsoft. Securing Azure customers from CPU vulnerability.
https://azure.microsoft.com/en-us/blog/securing-

azure-customers-from-cpu-vulnerability/, 2018.

[30] Chloe Jian Ma and Erez Cohen. OpenStack and OVS:
From Love-Hate Relationship to Match Made in Heaven.
https://events.static.linuxfound.org/sites/events/

files/slides/Mellanox%20OPNFV%20Presentation%20on%

20OVS%20Offload%20Nov%2012th%202015.pdf, Nov 2012.

[31] Jad Naous, David Erickson, G. Adam Covington, Guido Appen-
zeller, and Nick McKeown. Implementing an openflow switch on
the netfpga platform. In Proceedings of the 4th ACM/IEEE Sym-
posium on Architectures for Networking and Communications Sys-
tems, ANCS ’08, pages 1–9, New York, NY, USA, 2008. ACM.

[32] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun Lee, and
Minlan Yu. Silkroad: Making stateful layer-4 load balancing fast
and cheap using switching asics. In Proceedings of the Confer-
ence of the ACM Special Interest Group on Data Communication,
SIGCOMM ’17, pages 15–28, New York, NY, USA, 2017. ACM.

[33] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown,
Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat,
George Varghese, and David Walker. P4: Programming protocol-
independent packet processors. SIGCOMM Comput. Commun.
Rev., 44(3):87–95, July 2014.

64 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://technet.microsoft.com/en-us/library/hh997032(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/hh997032(v=ws.11).aspx
https://github.com/Mellanox/libvma
https://github.com/Mellanox/libvma
https://docs.microsoft.com/en-us/azure/expressroute/expressroute-introduction
https://docs.microsoft.com/en-us/azure/expressroute/expressroute-introduction
https://docs.microsoft.com/en-us/azure/expressroute/expressroute-introduction
https://azure.microsoft.com/en-us/blog/securing-azure-customers-from-cpu-vulnerability/
https://azure.microsoft.com/en-us/blog/securing-azure-customers-from-cpu-vulnerability/
https://events.static.linuxfound.org/sites/events/files/slides/Mellanox%20OPNFV%20Presentation%20on%20OVS%20Offload%20Nov%2012th%202015.pdf
https://events.static.linuxfound.org/sites/events/files/slides/Mellanox%20OPNFV%20Presentation%20on%20OVS%20Offload%20Nov%2012th%202015.pdf
https://events.static.linuxfound.org/sites/events/files/slides/Mellanox%20OPNFV%20Presentation%20on%20OVS%20Offload%20Nov%2012th%202015.pdf

