
Open access to the Proceedings of
the 15th USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by USENIX.

Andromeda: Performance, Isolation, and Velocity
at Scale in Cloud Network Virtualization

Michael Dalton, David Schultz, Jacob Adriaens, Ahsan Arefin, Anshuman Gupta,
Brian Fahs, Dima Rubinstein, Enrique Cauich Zermeno, Erik Rubow, James Alexander
Docauer, Jesse Alpert, Jing Ai, Jon Olson, Kevin DeCabooter, Marc de Kruijf, Nan Hua,

Nathan Lewis, Nikhil Kasinadhuni, Riccardo Crepaldi, Srinivas Krishnan, Subbaiah Venkata,
Yossi Richter, Uday Naik, and Amin Vahdat, Google, Inc.

https://www.usenix.org/conference/nsdi18/presentation/dalton

This paper is included in the Proceedings of the
15th USENIX Symposium on Networked

Systems Design and Implementation (NSDI ’18).
April 9–11, 2018 • Renton, WA, USA

ISBN 978-1-939133-01-4

Andromeda: Performance, Isolation, and Velocity at Scale
in Cloud Network Virtualization

Michael Dalton, David Schultz, Jacob Adriaens, Ahsan Arefin, Anshuman Gupta, Brian Fahs,
Dima Rubinstein, Enrique Cauich Zermeno, Erik Rubow, James Alexander Docauer, Jesse Alpert,

Jing Ai, Jon Olson, Kevin DeCabooter, Marc de Kruijf, Nan Hua, Nathan Lewis,
Nikhil Kasinadhuni, Riccardo Crepaldi, Srinivas Krishnan, Subbaiah Venkata, Yossi Richter,

Uday Naik, and Amin Vahdat
Google, Inc.

Abstract
This paper presents our design and experience with An-
dromeda, Google Cloud Platform’s network virtualization
stack. Our production deployment poses several challeng-
ing requirements, including performance isolation among
customer virtual networks, scalability, rapid provisioning
of large numbers of virtual hosts, bandwidth and latency
largely indistinguishable from the underlying hardware,
and high feature velocity combined with high availability.

Andromeda is designed around a flexible hierarchy of
flow processing paths. Flows are mapped to a program-
ming path dynamically based on feature and performance
requirements. We introduce the Hoverboard programming
model, which uses gateways for the long tail of low band-
width flows, and enables the control plane to program
network connectivity for tens of thousands of VMs in
seconds. The on-host dataplane is based around a high-
performance OS bypass software packet processing path.
CPU-intensive per packet operations with higher latency
targets are executed on coprocessor threads. This architec-
ture allows Andromeda to decouple feature growth from
fast path performance, as many features can be imple-
mented solely on the coprocessor path. We demonstrate
that the Andromeda datapath achieves performance that is
competitive with hardware while maintaining the flexibil-
ity and velocity of a software-based architecture.

1 Introduction
The rise of Cloud Computing presents new opportuni-

ties and challenges for networking. Cloud providers must
support virtual networks with high performance and a rich
set of features such as load balancing, firewall, VPN, QoS,
DoS protection, isolation, and NAT, all while operating
at a global scale. There has been substantial research in
network support for Cloud Computing, in particular in
high-speed dataplanes [17, 34], virtualized routing infras-
tructure [6, 22, 23, 31], and NFV middleboxes [14, 16].
Typical research efforts focus on point problems in the
space, rather than the challenges of bringing a working

system together end to end. We developed Andromeda,
the network virtualization environment for Google Cloud
Platform (GCP). We use this experience to show how we
divide functionality across a global, hierarchical control
plane, a high-speed on-host virtual switch, packet proces-
sors, and extensible gateways.

This paper focuses on the following topics:

• The Andromeda Control plane is designed for agility,
availability, isolation, and scalability. Scale up and down
of compute and rapid provisioning of virtual infrastructure
means that the control plane must achieve high perfor-
mance and availability. Andromeda scales to networks
over 100,000 VMs, and processes network updates with
a median latency of 184ms. Operations on behalf of one
virtual network, e.g., spinning up 10k VMs, should not
impact responsiveness for other networks.

• The Andromeda Dataplane is composed of a flexible set
of flow processing paths. The Hoverboard path enables
control plane scaling by processing the long tail of mostly
idle flows on dedicated gateways. Active flows are pro-
cessed by our on-host dataplane. The on-host Fast Path
is used for performance-critical flows and currently has a
300ns per-packet CPU budget. Expensive per-packet work
on-host is performed on the Coprocessor Path. We found
that most middlebox functionality such as stateful fire-
walls can be implemented in the on-host dataplane. This
improves latency and avoids the high cost of provisioning
middleboxes for active flows.

• To remain at the cutting edge, we constantly deploy new
features, new hardware, and performance improvements.
To maintain high deployment velocity without sacrific-
ing availability, Andromeda supports transparent VM live
migration and non-disruptive dataplane upgrades.

We describe the design of Andromeda and our experi-
ence evolving it over five years. Taken together, we have
improved throughput by 19x, CPU efficiency by 16x, la-
tency by 7x, and maximum network size by 50x, relative
to our own initial production deployment. Andromeda

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 373

also improved velocity through transparent VM migration
and weekly non-disruptive dataplane upgrades, all while
delivering a range of new end-customer Cloud features.

2 Overview
2.1 Requirements and Design Goals

A robust network virtualization environment must sup-
port a number of baseline and advanced features. Before
giving an overview of our approach, we start with a list of
features and requirements that informed our thinking:

• At the most basic level, network virtualization requires
supporting isolated virtual networks for individual cus-
tomers with the illusion that VMs in the virtual network
are running on their own private IP network. VMs in one
virtual network should be able to communicate with one
another, to internal Cloud provider services, to third party
providers, and to the Internet, all subject to customer pol-
icy while isolated from actions in other virtual networks.
While an ideal, our target is to support the same throughput
and latency available from the underlying hardware.

• Beyond basic connectivity, we must support constantly
evolving network features. Examples include billing, DoS
protection, tracing, performance monitoring, and firewalls.
We added and evolved these features and navigated several
major architectural shifts, such as transitioning to a kernel
bypass dataplane, all without VM disruption.

• A promise of Cloud Computing is higher availability
than what can be provisioned in smaller-scale deploy-
ments. Our network provides global connectivity, and it is
a core dependency for many services; therefore, it must be
carefully designed to localize failures and meet stringent
availability targets.

• Operationally, we have found live virtual machine mi-
gration [5, 11, 18, 30] to be a requirement for both overall
availability and for feature velocity of our infrastructure.
Live migration has a number of stringent requirements,
including packet delivery during the move from one phys-
ical server to another, as well as minimizing the duration
of any performance degradation.

• Use of GCP is growing rapidly, both in the number of
virtual networks and the number of VMs per network. One
critical consideration is control plane scalability. Large
networks pose three challenges, relative to small networks:
they require larger routing tables, the routing tables must
be disseminated more broadly, and they tend to have higher
rates of churn. The control plane must be able to support
networks with tens or even hundreds of thousands of VMs.
Additionally, low programming latency is important for
autoscaling and failover. Furthermore, the ability to pro-
vision large networks quickly makes it possible to run
large-scale workloads such as MapReduce inexpensively,
quickly, and on demand.

Figure 1: Andromeda Stack

2.2 Design Overview

Our general design approach centers around hierarchi-
cal data and control planes. The control plane is designed
around a global hierarchy coupled with the overall Cloud
cluster management layer. For example, configuring An-
dromeda is only one step among many in configuring
compute, storage, access control, etc. For isolation, we
run separate control stacks in every cluster. A cluster
is a collection of colocated machines with uniform net-
work connectivity that share the same hardware failure
domain. The Andromeda control plane maintains informa-
tion about where every VM in the network currently runs,
and all higher-level product and infrastructure state such as
firewalls, load balancers, and routing policy. The control
plane installs selected subsets of this state in individual
servers through a hierarchy of controllers.

The dataplane consists of a set of flexible user-space
packet processing paths. The VM host Fast Path is the
first path in the dataplane hierarchy and targets raw per-
formance over flexibility. The Fast Path has a per-packet
CPU budget of 300ns. Achieving this goal requires limit-
ing both the complexity of Fast Path work and the amount
of Fast Path state required to process packets. High perfor-
mance, latency-critical flows are processed end to end on
the Fast Path. Andromeda forwards other flows from the
Fast Path to Hoverboards or Coprocessors for additional
processing. On-host software Coprocessors running in
per-VM floating threads perform per-packet work that is
CPU-intensive or without strict latency targets. Coproces-
sors decouple feature growth from Fast Path performance,
providing isolation, ease of programming, and scalability.

Andromeda sends packets that do not match a flow rule
on the VM host to Hoverboards, dedicated gateways that
perform virtual network routing. The control plane dynam-
ically selects only active flows to be installed on VM hosts
based on current communication patterns. Hoverboards
process the long tail of mostly idle flows. Since typically
only a small subset of possible VM pairs in a network
communicate, only a small fraction of network configura-
tion is required at an individual VM host. Avoiding the
need to install full forwarding information on every host
improves per-server memory utilization and control-plane
CPU scalability by over an order of magnitude.

374 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

3 Control Plane
The Andromeda control plane consists of three layers:

Cluster Management (CM) Layer: The CM layer pro-
visions networking, storage, and compute resources on
behalf of users. This layer is not networking-specific, and
is beyond the scope of this paper.

Fabric Management (FM) Layer: The FM layer ex-
poses a high-level API for the CM Layer to configure
virtual networks. The API expresses user intent and ab-
stracts implementation details, such as the mechanism for
programming switches, the encapsulation format, and the
network elements responsible for specific functions.

Switch Layer: In this layer, two types of software
switches support primitives such as encapsulation, for-
warding, firewall, and load balancing. Each VM host has a
virtual switch based on Open vSwitch [33], which handles
traffic for all VMs on the host. Hoverboards are standalone
switches, which act as default routers for some flows.

3.1 FM Layer
When the CM layer connects to a FM controller, it sends

a full update containing the complete FM configuration
for the cluster. Subsequent updates are diffs against previ-
ously sent configuration. The FM configuration consists
of a set of entities with a known type, a unique name, and
parameters defining entity properties. Figure 2 lists some
examples of FM entities.

The FM API is implemented by multiple types of con-
trollers, each responsible for different sets of network
devices. Presently, VM Controllers (VMCs) program
VM hosts and Hoverboards, while Load-Balancing Con-
trollers [12] program load balancers. This paper focuses
on VMCs.

VMCs program VM host switches using a combination
of OpenFlow [3, 28] and proprietary extensions. VMCs
send OpenFlow requests to proxies called OpenFlow
Front Ends (OFEs) via RPC – an architecture inspired
by Onix [25]. OFEs translate those requests to Open-
Flow. OFEs decouple the controller architecture from the
OpenFlow protocol. Since OFEs maintain little internal
state, they also serve as a stable control point for VM
host switches. Each switch has a stable OFE connection
without regard for controller upgrade or repartitioning.

OFEs send switch events to VMCs, such as when a
switch connects to it, or when virtual ports are added for
new VMs. VMCs generate OpenFlow programming for
switches by synthesizing the abstract FM programming
and physical information reported in switch events. When
a VMC is notified that a switch connected, it reconciles the
switch’s OpenFlow state by reading the switch’s state via
the OFE, comparing that to the state expected by the VMC,
and issuing update operations to resolve any differences.

Network: QoS, firewall rules, . . .
VM: Private IP, external IPs, tags, . . .
Subnetwork: IP prefix
Route: IP prefix, priority, next hop, . . .

Figure 2: Examples of FM Entities

Multiple VMC partitions are deployed in every cluster.
Each partition is responsible for a fraction of the cluster
hosts, determined by consistent hashing [20]. The OFEs
broadcast some events, such as switch-connected events,
to all VMC partitions. The VMC partition responsible for
the host switch that generated the event will then subscribe
to other events from that host.

3.2 Switch Layer
The switch layer has a programmable software switch

on each VM host, as well as software switches called Hov-
erboards, which run on dedicated machines. Hoverboards
and host switches run a user-space dataplane and share
a common framework for constructing high-performance
packet processors. These dataplanes bypass the host ker-
nel network stack, and achieve high performance through
a variety of techniques. Section 4 discusses the VM host
dataplane architecture.

We employ a modified Open vSwitch [33] for the con-
trol portion of Andromeda’s VM host switches. A user-
space process called vswitchd receives OpenFlow pro-
gramming from the OFE, and programs the datapath. The
dataplane contains a flow cache, and sends packets that
miss in the cache to vswitchd. vswitchd looks up the flow
in its OpenFlow tables and inserts a cache entry.

We have modified the switch in a number of substantial
ways. We added a C++ wrapper to the C-based vswitchd,
to include a configuration mechanism, debugging hooks,
and remote health checks. A management plane process
called the host agent supports VM lifecycle events, such
as creation, deletion, and migration. For example, when
a VM is created, the host agent connects it to the switch
by configuring a virtual port in Open vSwitch for each
VM network interface. The host agent also updates VM
to virtual port mapping in the FM.

Extension modules add functionality not readily ex-
pressed in OpenFlow. Such extensions include connection
tracking firewall, billing, sticky load balancing, security
token validation, and WAN bandwidth enforcement [26].
The extension framework consists of upcall handlers run
during flow lookup. For example, Pre-lookup handlers
manage flow cache misses prior to OpenFlow lookup. One
such handler validates security tokens, which are crypto-
graphic ids inserted into packet headers to prevent spoof-
ing in the fabric. Another type is group lookup handlers,
which override the behavior of specific OpenFlow groups,
e.g., to provide sticky load balancing.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 375

3.3 Scalable Network Programming
A key question we faced in the design and evolution

of Andromeda was how to maintain correct forwarding
behavior for individual virtual networks that could in the-
ory scale to millions of individual VMs. Traditional net-
works heavily leverage address aggregation and physical
locality to scale the programming of forwarding behavior.
Andromeda, in contrast, decouples virtual and physical
addresses [23]. This provides many benefits, including
flexible addressing for virtual networks, and the ability
to transparently migrate VMs within the physical infras-
tructure (Section 3.4). However, this flexibility comes at a
cost, especially with respect to scaling the control plane.

One of the following three models is typically used to
program software-defined networks:

Preprogrammed Model: The control plane programs a
full mesh of forwarding rules from each VM to every
other VM in the network. This model provides consistent
and predictable performance. However, control plane
overhead scales quadratically with network size, and any
change in virtual network topology requires a propagation
of state to every node in the network.

On Demand Model: The first packet of a flow is sent to
the controller, which programs the required forwarding
rule. This approach scales better than the preprogrammed
model. However, the first packet of a flow has significantly
higher latency. Furthermore, this model is very sensitive
to control plane outages, and worse, it exposes the control
plane to accidental or malicious packet floods from VMs.
Rate limiting can mitigate such floods, but doing so while
preserving fairness and isolation across tenants is complex.

Gateway Model: VMs send all packets of a specific type
(e.g., all packets destined for the Internet) to a gateway
device, designed for high speed packet processing. This
model provides predictable performance and control plane
scalability, since changes in virtual network state need to
be communicated to a small number of gateways. The
downside is that the number of gateways needs to scale
with the usage of the network. Worse, the gateways need
to be provisioned for peak bandwidth usage and we have
found that peak to average bandwidth demands can vary
by up to a factor of 100, making it a challenge to provision
gateway capacity efficiently.

3.3.1 Hoverboard Model
Andromeda originally used the preprogrammed model

for VM-VM communication, but we found that it was
difficult to scale to large networks. Additionally, the pre-
programmed model did not support agility – the ability to
rapidly provision infrastructure – which is a key require-
ment for on-demand batch computing.

To address these challenges, we introduced the Hover-
board Model, which combines the benefits of On-Demand

Figure 3: Hoverboard Packet Forwarding

and Gateway models. The Andromeda VM host stack
sends all packets for which it does not have a route to
Hoverboard gateways, which have forwarding informa-
tion for all virtual networks. However, unlike the gateway
model, the control plane dynamically detects flows that
exceed a specified usage threshold and programs offload
flows, which are direct host-to-host flows that bypass the
Hoverboards. Figure 3 shows flows that use Hoverboards
as a default router and flows for which the control plane
has programmed a direct host to host route and offloaded
them from the Hoverboard.

The control plane detects these high bandwidth flows
based on usage reports from the sending VM hosts. For
robustness, we do not rely on usage reports from the Hov-
erboards themselves: the Hoverboards may not be able
to send such reports if they are overloaded, and thus the
control plane would be unable to install offload flows to
reduce the load.

The Hoverboard model avoids the pitfalls with the other
models. It is scalable and easy to provision: Our evalua-
tion (see Section 5.3) shows that the distribution of flow
bandwidth tends to be highly skewed, so a small number
of offload flows installed by the control plane diverts the
vast majority of the traffic in the cluster away from the
Hoverboards. Additionally, unlike the On Demand Model,
all packets are handled by a high performance datapath
designed for low latency.

Currently we use the Hoverboard model only to make
routing scale, but we plan to extend Hoverboards to sup-
port load balancing and other middlebox features. Stateful
features, such as firewall connection tracking or sticky
load balancing, are more challenging to support in the
Hoverboard model. Challenges include state loss dur-
ing Hoverboard upgrade or failure [21], transferring state
when offloading, and ensuring that flows are “sticky” to
the Hoverboard that has the correct state.

3.4 Transparent VM Live Migration
We opted for a high-performance software-based archi-

tecture instead of a hardware-only solution like SR-IOV
because software enables flexible, high-velocity feature
deployment (Section 4.1). VM Live Migration would be
difficult to deploy transparently with SR-IOV as the guest
would need to cope with different physical NIC resources
on the migration target host.

Live migration [5, 11] makes it possible to move a
running VM to a different host to facilitate maintenance,
upgrades, and placement optimization. Migrations are

376 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 4: Control Plane Replication and Partitioning

virtually transparent to the VM: the VM continues to see
the same virtual Ethernet device, and Andromeda ensures
that network connections are not interrupted. The VM
is paused during the migration blackout phase, which
has a median duration of 65ms and 99th percentile of
388ms. After blackout, the VM resumes execution on the
destination host.

Prior work [11, 30] focuses on migrations within a sin-
gle layer-2 domain. In contrast, Andromeda supports glo-
bal virtual networks and migrations across clusters. A key
challenge is avoiding packet loss during migration even
though global routing tables cannot be updated instantly.
During blackout, Andromeda enables hairpin flows on the
migration source host. The migration source will hairpin
any ingress packets intended for the migrating VM by
forwarding the packets to the migration destination. Af-
ter blackout ends, other VM hosts and Hoverboards are
updated to send packets destined for the migrated VM to
the migration destination host directly. Finally, the hairpin
flows on the migration source are removed. VROOM [35]
uses a similar approach to live migrate virtual routers.

3.5 Reliability
The Andromeda control plane is designed to be highly

available. To tolerate machine failures, each VMC par-
tition consists of a Chubby-elected [9] master and two
standbys. Figure 4 shows an Andromeda instance for a
cluster with four replicated VMC partitions. We found
the following principles important in designing a reliable,
global network control plane:

Scoped Control Planes: Andromeda programs net-
works that can be global in scope, so the cluster control
plane must receive updates for VMs in all other clusters.
We must ensure that a bad update or overload in one
region cannot spill over to the control planes for other
regions. To address this challenge, we split the control
plane into a regionally aware control plane (RACP) and
a globally aware control plane (GACP). The RACP
programs all intra-region network connectivity, with its
configuration limited to VMs in the local region. The
GACP manages inter-region connectivity, receiving FM

Figure 5: Host Dataplane Overview

updates for both local and remote regions. This approach
ensures that intra-region networking in each region is a
separate failure domain.

Network Isolation: Churn within one customer’s net-
work should not impact network programming latency
for other networks. To that end, VMCs maintain separate
queues for processing FM updates for each network.

Fail static: Every layer of the control plane is designed to
fail static. For example, hosts continue to forward packets
using the last-known-good programming state, even if
VMCs are unavailable. Hosts checkpoint their state to
allow them to preserve the fail static behavior across host
process restarts, and we routinely test fail-static behavior
by simulating outages in a test environment.

4 VM Host Dataplane
Figure 5 illustrates the Andromeda VM host dataplane.

The dataplane is a userspace process that performs all
on-host VM packet processing, combining both virtual
NIC and virtual switch functionality. There are two pri-
mary dataplane packet processing paths: the Fast Path
and the Coprocessor Path. The Fast Path performs high-
performance packet processing work such as encapsula-
tion and routing via a flow table. The Coprocessor Path
performs packet work that is either CPU-intensive or does
not have strict latency requirements, such as WAN packet
encryption.

Each VM is managed by a userspace Virtual Machine
Manager (VMM). There is one VMM per VM. The VMM
sends RPCs to the Andromeda dataplane for operations
such as mapping guest VM memory, configuring virtual
NIC interrupts and offloads, and attaching virtual NIC
queues.

The Fast Path maintains a cache of forwarding state
and associated packet processing actions. When a packet

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 377

misses in the Fast Path cache, it is sent to on-host vswitchd,
which maintains the full forwarding state programmed by
VMC. Vswitchd sends flow cache update instructions and
reinjects packets into the Fast Path.

A key goal of the Fast Path is to provide high-
throughput, low-latency VM networking. For perfor-
mance, the Fast Path busy polls on a dedicated logical
CPU. The other logical CPU on the physical core runs
low-CPU control plane work, such as RPC processing,
leaving most of the physical core for Fast Path use. The
Fast Path can process over three million small packets per
second with a single CPU, corresponding to a per-packet
CPU budget of 300ns. The Fast Path can be scaled to
multiple CPUs using multi-queue NICs.

4.1 Principles and Practices
Our overall dataplane design philosophy is flexible,

high-performance software coupled with hardware of-
floads. A high performance software dataplane can pro-
vide performance indistinguishable from the underlying
hardware. We provision sufficient Fast Path CPU to
achieve throughput targets, leveraging hardware offloads
on a per-platform basis to minimize the Fast Path CPU re-
quired. Currently, we offload encryption; checksums; and
memory copies using Intel QuickData DMA Engines [2].
We are investigating more substantial hardware offloads.

A software dataplane allows a uniform featureset and
performance profile for customers running on heteroge-
neous hardware with different NICs and hardware offloads.
This uniformity enables transparent live migration across
heterogenous hardware. Whether a network feature has
none, some, or all functionality in software or hardware
becomes a per-platform detail. On-host software is exten-
sible, supports rapid release velocity (see Section 6.2), and
scales to large amounts of state. A full SR-IOV hardware
approach requires dedicated middleboxes to handle new
features or to scale beyond hardware table limits. Such
middleboxes increase latency, cost, failure rates, and oper-
ational overhead.

To achieve high performance in software, the Fast Path
design minimizes Fast Path features. Each feature we add
to the Fast Path has a cost and consumes per-packet CPU
budget. Only performance-critical low-latency work be-
longs on the Fast Path. Work that is CPU-intensive or
does not have strict latency requirements, such as work
specific to inter-cluster or Internet traffic, belongs on the
Coprocessor Path. Our design also minimizes per-flow
work. All VM packets go through the Fast Path routing
flow table. We can optimize by using flow key fields to
pre-compute per-flow work. For example, Andromeda
computes an efficient per-flow firewall classifier during
flow insertion, rather than requiring an expensive full fire-
wall ruleset match for every packet.

The Fast Path uses high-performance best practices:

avoid locks and costly synchronization, optimize memory
locality, use hugepages, avoid thread handoffs, end-to-
end batching, and avoid system calls. For example, the
Fast Path only uses system calls for Coprocessor thread
wakeups and virtual interrupts. The Fastpath uses lock-
free Single Producer / Single Consumer (SPSC) packet
rings and channels for communication with control and
Coprocessor threads.

4.2 Fast Path Design

The Fast Path performs packet processing actions re-
quired for performance-critical VM flows, such as intra-
cluster VM-VM. The Fast Path consists of separate in-
gress and egress engines for packet processing and other
periodic work such as polling for commands from con-
trol threads. Engines consist of a set of reusable, con-
nected packet processing push or pull elements inspired by
Click [29]. Elements typically perform a single task and
operate on a batch of packets (up to 128 packets on ingress
and 32 on egress). Batching results in a 2.4x increase in
peak packets per second. VM and Host NIC queues are
the sources and sinks of element chains. To avoid thread
handoffs and system calls, the Fast Path directly accesses
both VM virtual NIC and host physical NIC queues via
shared memory, bypassing the VMM and host OS.

Figures 6 and 7 outline the elements and queues for
Andromeda Fast Path engines. The pull-pusher is the C++
call point into the element chain in both Fast Path engines.
In the egress engine, the pull-pusher pulls packets from
the VM transmit queue chain, and pushes the packets
to the NIC transmit queue chain. In the ingress engine,
the pull-pusher pulls packets from NIC receive queue
chain and pushes the packets to the VM chain. Engine
element chains must support fan-in and fan-out, as there
may be multiple queues and VMs. Hash Demux elements
use a packet 5-tuple hash to fan-out a batch of packets
across a set of push elements. Schedulers pull batches of
packets from a set of pull elements to provide fan-in. To
scale to many VMs and queues per host, the VM Round
Robin Scheduler element in the egress engine checks if a
VM’s queues are idle before calling the long chain of C++
element methods to actually pull packets from the VM.
Routing is the core of the Fast Path, and is implemented
by the ingress and egress flow table pipeline elements
discussed in Section 4.3.

Several elements assist with debugging and monitor-
ing. Tcpdump elements allow online packet dumps. Stats
exporter records internal engine and packet metrics for
performance tuning. Packet tracer sends metadata to an
off-host service for network analysis and debug. Latency
sampler records metadata for off-host analysis of network
RTT, throughput, and other performance information.

378 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 6: Andromeda dataplane egress engine. Note: Arrows indicate the direction of the push or pull C++ function call
chain. Packets flow from the lower right to the upper left.

Figure 7: Andromeda dataplane ingress engine. Note: Arrows indicate the direction of the push or pull C++ function
call chain. Packets flow from the upper left to the lower right.

4.3 Fast Path Flow Table
All VM packets pass through the engine flow table (FT)

for both routing and per-flow packet operations such as
encapsulation. The FT is a cache of the vswitchd flow
tables. We minimize per-flow work through the FT in mul-
tiple ways. The FT uses only a single hash table lookup
to map the flow key to a dense integer flow index. Subse-
quent tables, such as the action table and firewall policy
table, are flat arrays indexed by flow index. Flow actions
perform common packet operations such as encapsulation
and setting the Ethernet header. Actions also store the
destination virtual switch port and the set of Fast Path and
Coprocessor packet stages for the flow, if any. Commonly,
VM-VM intra-cluster flows have no packet stages enabled,
and complete FT execution after applying the action set to
the packet.

To avoid costly synchronization, the FT does not use
locks, and is never modified by the engines. To update
the FT, a control thread updates a shadow FT and then
updates the engine via SPSC channels to point to the new

FT [36]. Each engine maintains its own FT flow statistics,
which vswitchd periodically reads and aggregates.

When a packet is sent through the FT, the FT computes
the flow key for the packet, looks up the key in the flow
index table, then applies the specified flow actions and
any enabled Fast Path packet stages, and finally updates
statistics. If Coprocessor stages are enabled for the flow,
the packet is sent to the appropriate Coprocessor thread.

FT keys are either 3-tuple or 5-tuple. Ingress FT keys
support encapsulation, and include both the inner and outer
packet 3-tuple. Egress FT keys are unencapsulated. Flow
index table lookup is attempted first with a 3-tuple flow
key. If no match is found, a 5-tuple flow key is computed
and lookup is retried. If no match is found again the
packet is sent to the Flow Miss Coprocessor, which sends
the packet to vswitchd. 3-tuple keys are used wherever
possible, and are the common case for VM-VM traffic.
Example uses of 5-tuple keys include VM connections to
load balanced VIPs, as VIP backend selection is performed
on a per-connection basis.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 379

4.3.1 Middlebox Functionality
Andromeda provides middlebox functions such as fire-

wall, load balancing, and NAT on-host [7, 27, 32]. This
approach achieves higher performance and reduced pro-
visioning complexity compared to traditional dedicated
appliance middleboxes. A key challenge is how to ensure
that these features do not degrade Fast Path performance.
To accomplish this goal, we perform the expensive mid-
dlebox work in the on-host control plane on a flow miss.
The control plane inserts the flow into the FT with any
middlebox packet stage work pre-computed per-flow.

An example Fast Path feature is the always-on connec-
tion tracking firewall [4]. Traditional firewalls require
a firewall rule lookup and a connection-tracking table
lookup per packet, both of which are expensive. To mini-
mize per-flow work, vswitchd analyzes the rules on a flow
miss in order to minimize the amount of work that the
Fast Path must do. If the IP addresses and protocol in the
flow are always allowed in both directions, then no fire-
wall work is needed in the Fast Path. Otherwise, vswitchd
enables the firewall stage and computes a flow firewall
policy, which indicates which port ranges are allowed
for the flow IPs. The Fast Path matches packets against
these port ranges, which is much faster than evaluating
the full firewall policy. Furthermore, the firewall stage
skips connection tracking if a packet connection 5-tuple is
permitted by the firewall rules in both directions, which is
a common case for VM-VM and server flows.

4.4 Coprocessor Path
The Coprocessor Path implements features that are

CPU-intensive or do not have strict latency requirements.
Coprocessors play a key role in minimizing Fast Path fea-
tures, and decouple feature growth from Fast Path perfor-
mance. Developing Coprocessor features is easier because
Coprocessors do not have to follow the strict Fast Path best
practices. For example, Coprocessor stages may acquire
locks, allocate memory, and perform system calls.

Coprocessor stages include encryption, DoS, abuse de-
tection, and WAN traffic shaping. The encryption stage
provides transparent encryption of VM to VM traffic
across clusters. The DoS and abuse detection stage en-
forces ACL policies for VM to internet traffic. The WAN
traffic shaping stage enforces bandwidth sharing poli-
cies [26]. Coprocessor stages are executed in a per-VM
floating Coprocessor thread, whose CPU time is attributed
to the container of the corresponding VM. This design
provides fairness and isolation between VMs, which is
critical for more CPU-intensive packet work. A single
coprocessor thread performing Internet ACL/shaping can
send 11.8Gb/s in one netperf TCP stream, whereas one
coprocessor thread performing WAN encryption without
hardware offloads can send 4.6Gb/s. This inherent dif-
ference in per-packet processing overhead highlights the

need for attributing and isolating packet processing work.
Fast Path FT lookup determines the Coprocessor stages

enabled for a packet. If Coprocessor stages are enabled,
the Fast Path sends the packet to the appropriate Coproc-
essor thread via an SPSC packet ring, waking the thread
if necessary. The Coprocessor thread applies the Coproc-
essor stages enabled for the packet, and then returns the
packet to the Fast Path via a packet ring.

5 Evaluation
This section evaluates the resource consumption, per-

formance, and scalability of Andromeda.

5.1 On-Host Resource Consumption
Andromeda consumes a few percent of the CPU and

memory on-host. One physical CPU core is reserved for
the Andromeda dataplane. One logical CPU of the core
executes the busy polling Fast Path. The other mostly
idle logical CPU executes infrequent background work,
leaving most of the core’s shared resources available to the
Fast Path logical CPU. In the future, we plan to increase
the dataplane CPU reservation to two physical cores on
newer hosts with faster physical NICs and more CPU
cores in order to improve VM network throughput.

The Andromeda dataplane has a 1GB max memory
usage target. To support non-disruptive upgrades and a
separate dataplane lifecycle management daemon, the total
dataplane memory container limit is 2.5GB. The combined
vswitchd and host agent memory limit is 1.5GB.

5.2 Dataplane Performance
Dataplane performance has improved significantly

throughout the evolution of Andromeda.

Pre-Andromeda was implemented entirely in the VMM
and used UDP sockets for packet I/O. The dataplane sup-
ported only a single queue virtual NIC with zero offloads,
such as LRO and TSO.

Andromeda 1.0 included an optimized VMM packet
pipeline and a modified kernel Open vSwitch (OVS). We
added virtual NIC multi-queue and egress offloads.

Andromeda 1.5 added ingress virtual NIC offloads and
further optimized the packet pipeline by coalescing redun-
dant lookups in the VMM with the kernel OVS flow table
lookup. Host kernel scheduling and C-State management
were also optimized, improving latency.

Andromeda 2.0 consolidated prior VMM and host ker-
nel packet processing into a new OS-bypass busy-polling
userspace dataplane. The VMM continued to handle VM
virtual NIC ring access and interrupts, but all packet pro-
cessing was performed by the new dataplane. The VMM
exchanged packets with the dataplane via SPSC shared
memory rings. The dataplane maps in all VM memory,
and directly copies packet to/from VM memory.

380 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 8: Multi-stream TCP throughput.

Figure 9: TCP round trip latency.

Andromeda 2.1 directly accesses VM virtual NIC rings
in the dataplane, bypassing the VMM. Performance-
critical packets are processed end-to-end by the busy-
polling dataplane CPU without thread handoffs or context
switches. Eliminating the VMM from the packet datap-
ath removed four thread wakeups per network round trip
which significantly improved latency and CPU efficiency.

Andromeda 2.2 uses Intel QuickData DMA Engines [2]
to offload larger packet copies, improving throughput.
DMA engines use an IOMMU for safety and are directly
accessed by the dataplane via OS bypass. Tracking async
packet copies and maintaining order caused a slight la-
tency increase over Andromeda 2.1 for small packets.

Throughout this evolution, we tracked many perfor-
mance metrics. Figure 8 plots the same-cluster through-
put achievable by two VMs using 200 TCP streams. As
the stack evolved, we improved throughput by 19x and
improved same-cluster TCP round trip latency by 7x (Fig-
ure 9). Figure 10 plots the virtual network CPU efficiency
in cycles per byte during a multi-stream benchmark. Our
measurement includes CPU usage by the sender and re-
ceiver for both the VM and host network dataplane. The
host dataplane covers all host network processing, includ-
ing the VMM, host kernel, and new Andromeda OS bypass
dataplane. Overall, Andromeda reduced cycles per byte
by a factor of 16. For Andromeda 2.0 and later, we use the
host resource limits described in Section 5.1 and execute
the Fast Path on a single reserved logical CPU.

We measured these results on unthrottled VMs con-
nected to the same Top of Rack switch. Benchmark hosts
have Intel Sandy Bridge CPUs and 40Gb/s physical NICs
except for Pre-Andromeda, which used bonded 2x10Gb/s
NICs. The sender and receiver VMs run a Linux 3.18

Figure 10: CPU Efficiency. Note: Guest versus host
breakdown is unavailable for Pre-Andromeda

guest kernel, and are configured with 8 VCPUs. The
only hardware offloads used are checksum offloads, and
in Andromeda 2.2, memory copy offloads.

5.3 Control Plane Agility and Scale
Andromeda 1.0 used the preprogrammed model for

all VM-VM flows, and initially supported networks up
to 2k VMs. Under the preprogrammed model, even a
small change in a virtual network, such as adding a VM,
requires updating the routing tables for all other VMs in
the network.

We subsequently developed the Hoverboard model,
which made the control plane substantially more scalable
and agile. With Hoverboards, a new VM has network
connectivity as soon as its host and the Hoverboards are
programmed. Median programming latency – the time
required for the VM controller to process an FM request
(e.g., to add a VM to a network) and program the appro-
priate flow rules via OpenFlow – improved from 551ms
to 184ms. The 99th percentile latency dropped even more
substantially, from 3.7s to 576ms. Furthermore, the con-
trol plane now scales gracefully to virtual networks with
100k VMs.

Figure 11a shows VMC flow programming time for
networks with varying numbers of VMs. The control
plane has 30 VMC partitions with 8 Broadwell logical
CPUs per partition, and 60 OFEs with 4 CPUs each. VMs
are scheduled on a fixed pool of 10k physical hosts.

When using the Hoverboard model, the programming
time and number of flows grows linearly in network size.
However, when we use the preprogrammed model, the pro-
gramming time and number of flows is O(n×h), where n
is the number of VMs and h is the number of hosts with at
least one VM in the network. Multiple VMs on the same
host can share a forwarding table; without this optimiza-
tion, the number of flows would be O(n2). Programming
time grows quadratically in n until n ≈ h, and linearly
thereafter. Quadratic growth is representative of typical
multi-regional deployments, for which n ≪ h.

For the 40k VM network, VMCs program a total of
1.5M flows in 1.9 seconds with the Hoverboard model,
using a peak of 513MB of RAM per partition. Under
the preprogrammed model, VMCs program 487M flows

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 381

(a) Programming time vs. network size (b) Bandwidth distribution across flows
(c) Hoverboard throughput vs. offloaded
flows

Figure 11: Hoverboard scaling analysis

in 74 seconds, and peak RAM use per partition is 10GB.
Beyond 40k VMs, preprogramming led to stability issues
in the OFE and vswitchd due to the large number of flows.

The effectiveness of the Hoverboard model is predi-
cated on the assumption that a small number of offloaded
flows installed by the control plane can capture most of
the traffic, with a long tail of small flows going through
the Hoverboards. Indeed, network flows in our clusters
follow a power law distribution, consistent with prior ob-
servations, e.g., [19]. Figure 11b shows a CDF of peak
throughput across all VM pairs in a production cluster,
measured over a 30-minute window. 84% of VM pairs
never communicate: in the Hoverboard model, these flows
are never programmed, and their host overhead is zero.
98% of flows have peak throughput less than 20kbps, so
with an offload threshold of 20kbps, Hoverboards improve
control plane scalability by 50x.

Figure 11c shows the peak traffic through the Hover-
board gateways as we program more direct host to host
flows. The figure shows that by shifting a total of about
50k flows (less than 0.1% of the total flows possible) to
end hosts, the peak throughput through the Hoverboard
gateways drops to less than 1% of the cluster bandwidth.

6 Experiences
This section describes our experiences building An-

dromeda, challenges we faced as the system grew and
evolved, and how we addressed those challenges.

6.1 Resource Management
In a Cloud environment, it is essential to provide iso-

lation among tenants while making effective use of re-
sources. Here we discuss CPU and memory; for a descrip-
tion of how we manage network bandwidth, see [26].

6.1.1 CPU Isolation
Andromeda 1.0 shipped with a kernel datapath that pro-

vided limited isolation. Ingress traffic was processed on
kernel softirq threads shared by all VMs on-host. These
softirq threads could run on any host CPU and did not
have CPU attribution. The current Andromeda userspace

datapath performs Fast Path processing on its own dedi-
cated CPU. Packets requiring CPU-intensive processing
are sent to a per-VM coprocessor thread which is CPU
attributed to the VM container

As the Fast Path is shared by all VMs on-host, Androm-
eda provides isolation within the Fast Path. For egress, the
Fast Path polls VMs round robin and each VM is rate lim-
ited to a VM virtual NIC line rate. Initially, we provided
no Fast Path isolation between VMs for ingress. This re-
sulted in noisy neighbor problems when the packet rate of
one VM was higher than the Fast Path could pull packets
off the physical NIC. The NIC queue would back up and
drop packets, harming other VMs on-host.

To improve isolation, we split the Fast Path ingress en-
gine into two parts. The front half polls the NIC, performs
flow table lookup, and places packets into per-VM queues.
The more CPU intensive back half pulls packets from the
per-VM queues, copies the packets to the VM, and may
raise a virtual interrupt. In Figure 7, the back half be-
gins after the Per VM Queues stage. Isolation is provided
within the back half by the VM Priority Scheduler. The
scheduler selects the per-VM queue whose recent back
half processing has consumed the least Fast Path CPU.
Unfortunately, noisy neighbor issues may still arise if the
less CPU intensive front half is overloaded. In the future
we will explore use of per-VM physical NIC queues to
provide isolation in the front half as well.

6.1.2 Guest VM Memory
The Andromeda dataplane maps in all of guest VM

memory for all VMs on-host, as any guest memory ad-
dress may be used for packet I/O. However, dataplane
access to VM memory creates attribution and robustness
challenges. Guest VM memory is backed by a host tmpfs
file and is demand-allocated. Dataplane access to an un-
backed VM memory page causes a page allocation, which
is typically charged to the process triggering the allocation.
To ensure that the dataplane does not exceed its memory
limits (Section 5.1), we modified our host Linux kernel to
always charge VM memory page allocations to the VM
memory container rather than the process triggering the
allocation.

382 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

The dataplane memory container is also charged for
kernel page table memory. Over time, the dataplane can
access hundreds of GB of VM memory. If page table
memory usage exceeds a target limit, Andromeda asks the
kernel to free page table entries. This is done by mmaping
the VM memory file over its existing mapping, which
atomically replaces the existing mapping. Remapping a
guest VM memory region is done in multiple mmap calls
over small chunks rather than one system call. This avoids
tail latency due to kernel memory lock contention.

A VM can crash while the dataplane is accessing VM
memory. A compromised VMM could also truncate the
VM memory backing file. To handle these cases, all dat-
aplane VM memory access occurs via custom assembly
memcpy functions. On VM memory access failure, the
dataplane receives a signal. The dataplane signal handler
modifies the signal saved registers so that execution re-
sumes at a custom memcpy fixup handler, which returns
failure to the memcpy caller. On memcpy failure, the dat-
aplane disconnects the offending VM’s queues. We must
minimize the Fast Path cost relative to normal memcpy
in the common case of VM memory access success. Our
approach requires only a single extra branch to test the
memcpy return value. This is similar to how the Linux
kernel handles failure during memory copies to userspace.

6.1.3 Memory Provisioning
Our Cloud environment serves a diverse set of applica-

tions which place varying memory demands on the net-
work stack due to routing tables, firewall connection track-
ing, load balancing, etc. Therefore, a key challenge is how
to provision memory with minimal waste.

We initially expected network virtualization features
to span the Top of Rack switch (ToR), switch fabric, and
host machine software. The fact that we already managed
ToR and switch fabrics with OpenFlow contributed to
our decision to use OpenFlow for Andromeda. However,
we found that scaling a feature to many virtual networks
is much easier on an end host where we can provision
additional memory and CPU per network.

Currently we statically provision dataplane memory on
each host (Section 5.1), regardless of the number of VMs
running on the host or how those VMs use networking
features. We are exploring attribution of dataplane net-
working memory usage to VM containers so that network
features may dynamically scale memory usage. This ap-
proach reduces dataplane memory overprovisioning and
allows the cluster manager to take network memory usage
for a VM into account during VM placement.

6.2 Velocity
The Cloud ecosystem is evolving rapidly, so a key chal-

lenge was to build a platform with high feature velocity.
Our strategy for achieving velocity has evolved over time.

6.2.1 Andromeda 1.0: Kernel Datapath
Andromeda 1.0 shipped with the Open vSwitch kernel

datapath. Kernel upgrades were much slower than our
control plane release cycle. The OpenFlow APIs provide a
flexible flow programming model that allowed us to deploy
a number of features with only control plane changes.
OpenFlow was instrumental in getting the project off the
ground and delivering some of the early features, such as
load balancing and NAT, via control plane changes alone.

However, we also faced a number of difficulties. For
example, OpenFlow was not designed to support stateful
features such as connection tracking firewalls and load bal-
ancing. We initially tried to express firewall rules in Open-
Flow. However, expressing firewall semantics in terms of
generic primitives was complex, and the implementation
was difficult to optimize and scale. We ultimately added
an extension framework in OVS to support these features.
Unlike OpenState [8] and VFP [13], which integrate state-
ful primitives into the flow lookup model, our extensions
use a separate configuration push mechanism.

6.2.2 Andromeda 2.0: Userspace Datapath
Qualifying and deploying a new kernel to a large fleet

of machines is intrinsically a slow process. Andromeda
2.0 replaced the kernel dataplane with a userspace OS by-
pass dataplane, which enabled weekly dataplane upgrades.
At that point, the advantage of having a programming
abstraction as generic as OpenFlow diminished.

A rapid dataplane release cycle requires non-disruptive
updates and robustness to rare but inevitable dataplane
bugs. To provide non-disruptive updates, we use an up-
grade protocol consisting of a brownout and blackout
phase. During brownout, the new dataplane binary starts
and transfers state from the old dataplane. The old data-
plane continues serving during brownout. After the initial
state transfer completes, the old dataplane stops serving
and blackout begins. The old dataplane then transfers
delta state to the new dataplane, and the new dataplane
begins serving. Blackout ends for a VM when the VMM
connects to the new dataplane and attaches its VM virtual
NIC. The median blackout time is currently 270ms. We
plan to reduce blackout duration by passing VMM con-
nection file descriptors as part of state transfer to avoid
VMM reconnect time.

The userspace dataplane improves robustness to data-
plane bugs. The VM and host network can be hardened so
that a userspace dataplane crash only results in a tempo-
rary virtual network outage for the on-host VMs. On-host
control services continuously monitor the health of the dat-
aplane, restarting the dataplane if health checks fail. Host
kernel networking uses separate queues in the NIC, so we
can roll back dataplane releases even if the dataplane is
down. In contrast, a failure in the Linux kernel network
stack typically takes down the entire host.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 383

6.3 Scaling and Agility
Our initial pre-Andromeda virtual network used a global

control plane, which pre-programmed routes for VM-VM
traffic, but also supported on-demand lookups to reduce
perceived programming latency. The on-demand model
was not robust under load. When the control plane fell
behind, all VM hosts would request on-demand program-
ming, further increasing the load on the control plane,
leading to an outage.

Andromeda initially used OpenFlow and the pre-
programmed model exclusively. As we scaled to large
networks, we ran into OpenFlow limitations. For example,
supporting a million-entry IP forwarding table across a
large number of hosts requires the control plane to trans-
mit a compact representation of the routes to the dataplane.
Expressing such a large number of routes in OpenFlow
adds unacceptable overhead. As another example, the Re-
verse Path Forwarding check in OpenFlow required us to
duplicate data that was already present in the forwarding
table, and we built a special-purpose extension to avoid
this overhead. We also scaled the control plane by parti-
tioning VM Controllers and parallelizing flow generation.
However, the pre-programmed model’s quadratic scaling
(see Section 5.3) continued to create provisioning chal-
lenges, particularly for on-demand customer workloads.

Later, we introduced the Hoverboard model, which lead
to more stable control plane overhead and enabled much
faster provisioning of networks (see Section 5.3). Hover-
boards have allowed us to scale to support large virtual
networks. However, certain workloads create challenges.
For example, batch workloads in which many VM pairs
begin communicating simultaneously at high bandwidth
consume substantial Hoverboard capacity until the control
plane can react to offload the flows. We have made a num-
ber of improvements to address that, such as detecting and
offloading high-bandwidth flows faster.

7 Related Work
The Andromeda control plane builds upon a wide body

of software defined networking research [10, 15, 25],
OpenFlow [3, 28] and Open vSwitch [33]. The data plane
design overlaps with concepts described in Click [29],
SoftNIC [17], and DPDK [1].

NVP [24] is a SDN-based network virtualization stack,
like Andromeda. NVP also uses Open vSwitch, along
with the OVS kernel datapath, similar to Andromeda 1.0.
The NVP control plane uses the preprogrammed model
(Section 3.3), so a network with n VMs will have O(n2)
flows. NVP scales by using partitioning, and by dividing
the control plane into virtual and physical layers. An-
dromeda also uses partitioning, but principally solves the
scaling issue by using the Hoverboard model.

VFP [13] is the SDN-based virtualization host stack for
Microsoft Azure, using a layered match-action table model

with stateful rules. All VFP features support offloading
to an exact-match fastpath implemented in the host ker-
nel or an SR-IOV NIC. Andromeda uses a hierarchy of
flexible software-based userspace packet processing paths.
Relative to VFP, Coprocessors enable rapid iteration on
features that are CPU-intensive or do not have strict la-
tency targets, and allow these features to be built with
high performance outside of the Fast Path. Andromeda
does not rely on offloading entire flows to hardware: We
demonstrate that a flexible software pipeline can achieve
performance competitive with hardware. Our Fast Path
supports 3-tuple flow lookups and minimizes use of state-
ful features such as firewall connection tracking. While
the VFP paper does not focus on the control plane, we
present our experiences and approach to building a highly
scalable, agile, and reliable network control plane.

8 Conclusions

This paper presents the design principles and deploy-
ment experience with Andromeda, Google Cloud Plat-
form’s network virtualization stack. We show that an OS
bypass software datapath provides performance competi-
tive with hardware, achieving 32.8Gb/s using a single core.
To achieve isolation and decouple feature growth from fast-
path performance, we execute CPU-intensive packet work
on per-VM Coprocessor threads. The Andromeda Control
plane is designed for agility, availability, isolation, fea-
ture velocity, and scalability. We introduce Hoverboards,
which makes it possible to program connectivity for tens
of thousands of VMs in seconds. Finally, we describe our
experiences deploying Andromeda, and we explain how
non-disruptive upgrades and VM live migration were criti-
cal to navigating major architectural shifts in production
with essentially no customer impact.

In the future, we will offload more substantial portions
of the Fast Path to hardware. We will continue to improve
scalability, as lightweight virtual network endpoints such
as containers will result in much larger and more dynamic
virtual networks.

Acknowledgements

We would like to thank our reviewers, shepherd Michael
Kaminsky, Jeff Mogul, Rama Govindaraju, Aspi Sigan-
poria, and Parthasarathy Ranganathan for paper feedback
and guidance. We also thank the following individuals,
who were instrumental in the success of the project: Aspi
Siganporia, Alok Kumar, Andres Lagar-Cavilla, Bill Som-
merfeld, Carlo Contavalli, Frank Swiderski, Jerry Chu,
Mike Bennett, Mike Ryan, Pan Shi, Phillip Wells, Phong
Chuong, Prashant Chandra, Rajiv Ranjan, Rüdiger Son-
derfeld, Rudo Thomas, Shay Raz, Siva Sunkavalli, and
Yong Ni.

384 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] Intel data plane development kit. http://

www.intel.com/go/dpdk.

[2] Intel I/O acceleration technology. https:
//www.intel.com/content/www/
us/en/wireless-network/accel-
technology.html.

[3] Openflow specification. https://
www.opennetworking.org/software-
defined-standards/specifications/.

[4] Using networks and firewalls. https:
//cloud.google.com/compute/docs/
networking.

[5] M. Baker-Harvey. Google compute engine uses
live migration technology to service infrastruc-
ture without application downtime. https:
//cloudplatform.googleblog.com/
2015/03/Google-Compute-Engine-
uses-Live-Migration-technology-
to-service-infrastructure-without-
application-downtime.html.

[6] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Har-
ris, A. Ho, R. Neugebauer, I. Pratt, and A. Warfield.
Xen and the art of virtualization. In Proceedings
of the Nineteenth ACM Symposium on Operating
Systems Principles, SOSP ’03, pages 164–177, New
York, NY, USA, 2003. ACM.

[7] S. M. Bellovin. Distributed firewalls. IEEE Commu-
nications Magazine, 32:50–57, 1999.

[8] G. Bianchi, M. Bonola, A. Capone, and C. Cascone.
OpenState: Programming platform-independent
stateful openflow applications inside the switch. SIG-
COMM, 44(2):44–51, Apr. 2014.

[9] M. Burrows. The Chubby lock service for loosely-
coupled distributed systems. In Proceedings of the
7th Symposium on Operating Systems Design and Im-
plementation, OSDI ’06, pages 335–350, Berkeley,
CA, USA, 2006. USENIX Association.

[10] M. Casado, M. J. Freedman, J. Pettit, J. Luo,
N. McKeown, and S. Shenker. Ethane: Taking con-
trol of the enterprise. In Proceedings of the 2007
Conference on Applications, Technologies, Architec-
tures, and Protocols for Computer Communications,
SIGCOMM ’07, pages 1–12, New York, NY, USA,
2007. ACM.

[11] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,
C. Limpach, I. Pratt, and A. Warfield. Live mi-
gration of virtual machines. In Proceedings of the
2nd Conference on Symposium on Networked Sys-
tems Design & Implementation - Volume 2, NSDI’05,
pages 273–286, Berkeley, CA, USA, 2005. USENIX
Association.

[12] D. E. Eisenbud, C. Yi, C. Contavalli, C. Smith,
R. Kononov, E. Mann-Hielscher, A. Cilingiroglu,
B. Cheyney, W. Shang, and J. D. Hosein. Ma-
glev: A fast and reliable software network load bal-
ancer. In Proceedings of the 13th Usenix Conference
on Networked Systems Design and Implementation,
NSDI’16, pages 523–535, Berkeley, CA, USA, 2016.
USENIX Association.

[13] D. Firestone. VFP: A virtual switch platform for
host SDN in the public cloud. In 14th USENIX
Symposium on Networked Systems Design and Im-
plementation (NSDI 17), pages 315–328, Boston,
MA, 2017. USENIX Association.

[14] A. Gember-Jacobson, R. Viswanathan, C. Prakash,
R. Grandl, J. Khalid, S. Das, and A. Akella. OpenNF:
Enabling innovation in network function control. In
Proceedings of the 2014 ACM Conference on SIG-
COMM, SIGCOMM ’14, pages 163–174, New York,
NY, USA, 2014. ACM.

[15] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. My-
ers, J. Rexford, G. Xie, H. Yan, J. Zhan, and
H. Zhang. A clean slate 4D approach to network
control and management. SIGCOMM Comput. Com-
mun. Rev., 35(5):41–54, Oct. 2005.

[16] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee. Net-
work function virtualization: Challenges and oppor-
tunities for innovations. Communications Magazine,
IEEE, 53(2):90–97, Feb. 2015.

[17] S. Han, K. Jang, A. Panda, S. Palkar, D. Han, and
S. Ratnasamy. SoftNIC: A software NIC to augment
hardware. Technical Report UCB/EECS-2015-155,
EECS Department, University of California, Berke-
ley, May 2015.

[18] M. R. Hines, U. Deshpande, and K. Gopalan. Post-
copy live migration of virtual machines. SIGOPS
Oper. Syst. Rev., 43(3):14–26, July 2009.

[19] R. Jain. Characteristics of destination address local-
ity in computer networks: A comparison of caching
schemes. Computer Networks and ISDN Systems,
18:243–254, 1989.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 385

http://www.intel.com/go/dpdk
http://www.intel.com/go/dpdk
https://www.intel.com/content/www/us/en/wireless-network/accel-technology.html
https://www.intel.com/content/www/us/en/wireless-network/accel-technology.html
https://www.intel.com/content/www/us/en/wireless-network/accel-technology.html
https://www.intel.com/content/www/us/en/wireless-network/accel-technology.html
https://www.opennetworking.org/software-defined-standards/specifications/
https://www.opennetworking.org/software-defined-standards/specifications/
https://www.opennetworking.org/software-defined-standards/specifications/
https://cloud.google.com/compute/docs/networking
https://cloud.google.com/compute/docs/networking
https://cloud.google.com/compute/docs/networking
https://cloudplatform.googleblog.com/2015/03/Google-Compute-Engine-uses-Live-Migration-technology-to-service-infrastructure-without-application-downtime.html
https://cloudplatform.googleblog.com/2015/03/Google-Compute-Engine-uses-Live-Migration-technology-to-service-infrastructure-without-application-downtime.html
https://cloudplatform.googleblog.com/2015/03/Google-Compute-Engine-uses-Live-Migration-technology-to-service-infrastructure-without-application-downtime.html
https://cloudplatform.googleblog.com/2015/03/Google-Compute-Engine-uses-Live-Migration-technology-to-service-infrastructure-without-application-downtime.html
https://cloudplatform.googleblog.com/2015/03/Google-Compute-Engine-uses-Live-Migration-technology-to-service-infrastructure-without-application-downtime.html
https://cloudplatform.googleblog.com/2015/03/Google-Compute-Engine-uses-Live-Migration-technology-to-service-infrastructure-without-application-downtime.html

[20] D. Karger, E. Lehman, T. Leighton, R. Panigrahy,
M. Levine, and D. Lewin. Consistent hashing and
random trees: Distributed caching protocols for re-
lieving hot spots on the world wide web. In Proceed-
ings of the Twenty-ninth Annual ACM Symposium
on Theory of Computing, STOC ’97, pages 654–663,
New York, NY, USA, 1997. ACM.

[21] J. Khalid, A. Gember-Jacobson, R. Michael, A. Ab-
hashkumar, and A. Akella. Paving the way for NFV:
Simplifying middlebox modifications using state-
alyzr. In 13th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 16), pages
239–253, Santa Clara, CA, 2016. USENIX Associa-
tion.

[22] C. Kim, M. Caesar, and J. Rexford. Floodless in Seat-
tle: A scalable ethernet architecture for large enter-
prises. In Proceedings of the ACM SIGCOMM 2008
Conference on Data Communication, SIGCOMM
’08, pages 3–14, New York, NY, USA, 2008. ACM.

[23] T. Koponen, K. Amidon, P. Balland, M. Casado,
A. Chanda, B. Fulton, I. Ganichev, J. Gross, P. In-
gram, E. Jackson, A. Lambeth, R. Lenglet, S.-H. Li,
A. Padmanabhan, J. Pettit, B. Pfaff, R. Ramanathan,
S. Shenker, A. Shieh, J. Stribling, P. Thakkar,
D. Wendlandt, A. Yip, and R. Zhang. Network
virtualization in multi-tenant datacenters. In 11th
USENIX Symposium on Networked Systems Design
and Implementation (NSDI 14), pages 203–216, Seat-
tle, WA, 2014. USENIX Association.

[24] T. Koponen, K. Amidon, P. Balland, M. Casado,
A. Chanda, B. Fulton, I. Ganichev, J. Gross, P. In-
gram, E. Jackson, A. Lambeth, R. Lenglet, S.-H. Li,
A. Padmanabhan, J. Pettit, B. Pfaff, R. Ramanathan,
S. Shenker, A. Shieh, J. Stribling, P. Thakkar,
D. Wendlandt, A. Yip, and R. Zhang. Network
virtualization in multi-tenant datacenters. In 11th
USENIX Symposium on Networked Systems Design
and Implementation (NSDI 14), pages 203–216, Seat-
tle, WA, 2014. USENIX Association.

[25] T. Koponen, M. Casado, N. Gude, J. Stribling,
L. Poutievski, M. Z. Google, R. Ramanathan, Y. I.
NEC, H. I. NEC, T. H. NEC, and S. Shenker. Onix:
a distributed control platform for large-scale produc-
tion networks. In Proceedings of the 9th USENIX
Conference on Operating Systems Design and Im-
plementation, pages 351–364, Berkeley, CA, USA,
2010.

[26] A. Kumar, S. Jain, U. Naik, A. Raghuraman, N. Kasi-
nadhuni, E. C. Zermeno, C. S. Gunn, J. Ai, B. Car-

lin, M. Amarandei-Stavila, M. Robin, A. Siganporia,
S. Stuart, and A. Vahdat. BwE: Flexible, hierarchical
bandwidth allocation for WAN distributed comput-
ing. In Proceedings of the 2015 ACM Conference
on Special Interest Group on Data Communication,
SIGCOMM ’15, pages 1–14, New York, NY, USA,
2015. ACM.

[27] J. Lee, J. Tourrilhes, P. Sharma, and S. Banerjee. No
more middlebox: Integrate processing into network.
In Proceedings of the ACM SIGCOMM 2010 Con-
ference, SIGCOMM ’10, pages 459–460, New York,
NY, USA, 2010. ACM.

[28] N. McKeown, T. Anderson, H. Balakrishnan,
G. Parulkar, L. Peterson, J. Rexford, S. Shenker,
and J. Turner. OpenFlow: Enabling innovation in
campus networks. SIGCOMM Comput. Commun.
Rev., 38(2):69–74, Mar. 2008.

[29] R. Morris, E. Kohler, J. Jannotti, and M. F. Kaashoek.
The click modular router. In Proceedings of the
Seventeenth ACM Symposium on Operating Systems
Principles, SOSP ’99, pages 217–231, New York,
NY, USA, 1999. ACM.

[30] M. Nelson, B.-H. Lim, and G. Hutchins. Fast trans-
parent migration for virtual machines. In USENIX
Annual Technical Conference, USENIX ’05, pages
391–394, Berkeley, CA, USA, 2005. USENIX Asso-
ciation.

[31] R. Niranjan Mysore, A. Pamboris, N. Farrington,
N. Huang, P. Miri, S. Radhakrishnan, V. Subramanya,
and A. Vahdat. PortLand: A scalable fault-tolerant
layer 2 data center network fabric. In Proceedings
of the ACM SIGCOMM 2009 Conference on Data
Communication, SIGCOMM ’09, pages 39–50, New
York, NY, USA, 2009. ACM.

[32] P. Patel, D. Bansal, L. Yuan, A. Murthy, A. Green-
berg, D. A. Maltz, R. Kern, H. Kumar, M. Zikos,
H. Wu, C. Kim, and N. Karri. Ananta: Cloud
scale load balancing. In Proceedings of the ACM
SIGCOMM 2013 Conference on SIGCOMM, SIG-
COMM ’13, pages 207–218, New York, NY, USA,
2013. ACM.

[33] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou,
J. Rajahalme, J. Gross, A. Wang, J. Stringer, P. She-
lar, K. Amidon, and M. Casado. The design and
implementation of open vswitch. In 12th USENIX
Symposium on Networked Systems Design and Im-
plementation (NSDI 15), pages 117–130, Oakland,
CA, 2015. USENIX Association.

386 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[34] L. Rizzo. Netmap: A novel framework for fast
packet i/o. In Proceedings of the 2012 USENIX Con-
ference on Annual Technical Conference, USENIX
ATC’12, pages 9–9, Berkeley, CA, USA, 2012.
USENIX Association.

[35] Y. Wang, E. Keller, B. Biskeborn, J. van der Merwe,
and J. Rexford. Virtual routers on the move: Live
router migration as a network-management primitive.
In Proceedings of the ACM SIGCOMM 2008 Con-
ference on Data Communication, SIGCOMM ’08,
pages 231–242, New York, NY, USA, 2008. ACM.

[36] K.-K. Yap, M. Motiwala, J. Rahe, S. Padgett, M. Hol-
liman, G. Baldus, M. Hines, T. Kim, A. Narayanan,
A. Jain, V. Lin, C. Rice, B. Rogan, A. Singh,
B. Tanaka, M. Verma, P. Sood, M. Tariq, M. Tierney,
D. Trumic, V. Valancius, C. Ying, M. Kallahalla,
B. Koley, and A. Vahdat. Taking the edge off with
espresso: Scale, reliability and programmability for
global internet peering. In Proceedings of the Con-
ference of the ACM Special Interest Group on Data
Communication, SIGCOMM ’17, pages 432–445,
New York, NY, USA, 2017. ACM.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 387

