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At the time the paper was written...

« WWW was new, and Internet traffic was growing fast

» Fastest Ethernet networks ran at 100Mb/s

» Lots of interest in building faster switches and routers

» Lively debate about an alternative to the Internet, called “ATM”



But first...



A few words about packet queues...

R =line rate.
e.g. 100M bit/s, 10Gb/s
; Packet buffer
AR R

Q: For any “load” A < 1, what arrival pattern
leads to the most customers in the queue?
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Observation: With one arrival “line” at the same rate,
the queue is always empty (or at most one store-and-
forward packet). The arrival process is “bounded” by R.

Q: For any “load” A < 1, what arrival pattern
leads to the most customers in the queue?
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Observation: The arrival rate is “bounded” by R on
average.



Different cases for4 =1

0.5 1 1.5 2

Q: How big does the buffer need to be?

0.5 1 1.5 2

Q: How big does the buffer need to be?

time, s
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Q: How big does the buffer need to be?

Observation: For a given arrival rate, in order to know the
queueing delay, we need to know the pattern (or “process”) of
arrivals.




Background

1 R,
2 B/
3R,
A switch, or router, with N “ports”. N R/ R

Each port runs at rate R b/s.

We say the “switching capacity” is N x R b/s.



An output-queued (OQ) switch
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Properties of an OQ switch

« All buffering takes place at the output.

» Output queues must be able to write
packets at rate N x R.

Consequences

« “Work conserving”: Whenever there is a
packet in the system, its output is busy
sending a packet. No unnecessary idling.

« Average delay is minimized.

« But memory bandwidth limits the switching
capacity.



Traffic Matrix

Traffic matrix, A = [A; ;]

A; j is the fraction of traffic from input i to output ;

]Lm

For example:
0.1 02 02 04

ﬁR;, A= |02 03 01 01
1.0 0.0 0.0 0.0

0.1 04 0.3 01

R, Note that the row (input) sum: ¥ 4; ; < 1,Vi

Non-oversubscribed TM: Uniform Traffic Matrix:

Total traffic rate to each

. 1 1 1 1
outputis <1 L1
. A=A
:i 3 +’ : 1 1 1 1

and still: ) 24 <1, Vi
J

where: A < 1/N




OQ Switches and “100% Throughput”

If we send traffic according to any non-over-subscribed
traffic matrix to an OQ switch (with infinite buffers) then the

output rates correspond to the column sums.
i.e. The traffic rate at output j = RY;A;; <R

b

We often say an OQ switch can “sustain 100% throughput”.

Q: What happens if the buffers are finite?



An input-queued (1Q) switch
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Properties of an IQ switch

« All buffering takes place at the input.
 Input queues only need to be able to write
packets at rate R (instead of N x R).

Consequences

» Can build a switch N times faster.

But, a packet can be held up by packet
ahead destined to a different output.
Hence an 1Q switch is not “work
conserving”. It can unnecessarily idle.
May not achieve “100% throughput”.
Average delay is not minimized.
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Head of Line Blocking
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Head of Line Blocking
|Q switch with uniform traffic matrix, 1 < 1

Observation: HOL Blocking means we lose
42% of the switching capacity

Delay, d Poisson arrivals: 8
A<2-+2~58% . & _ _
Karol ‘87 . o| Poisson arrivals:
. O E(d) = 1 (2 — /1)
—2\1-2
0 0.5 0.58 0.75 | sad. 2 1 .



What does the “58%” result mean?
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Arrival rate Departure rate
AL} uR >
Ausli
OQ switch
Arrival rate Departure rate
AR R__,

|Q switch uniform TM, Poisson

Arrival rate Departure rate

AR 0.58R
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Virtual Output Queues (VOQs)
0







Basic idea

With a VOQ, a packet cannot be held up by a packet in
front of it, destined to a different output.

Q: With VOQs, does/can 58% become 100% throughput?

|Q switch uniform TM, Poisson

Arrival rate

AR

Departure rate

0.58R |

—

|Q switch with VOQs

Any TM, Any arrivals

Arrival rate

AR

Departure rate

R >
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100% Throughput

Reminder: “100% throughput” is equivalent to

For a non over-subscribing traffic matrix, queues
don’t grow without bound.
i.e. u = Afor every queue in the system.

Observations:
1. Burstiness of arrivals does not affect throughput
2. For a uniform Traffic Matrix, solution is trivial!
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An input-queued (1Q) switch
with VOQs and a crossbar

N2VOQs
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... Observation: scheduling is
equivalent to choosing a permutation.

v

NI == [ VY

v

_ITT] 18



bipartite
request
graph

bipartite
match

S ‘%‘

e.g. “maximum size match”
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Crossbar schedule

Fixed cycle of permutations:

—

crossbar

crossbar

|
crossbar

crossbar

A < 1, therefore
arrival rate < departure rate.
True for all VOQs, therefore
100% throughput for uniform TM

e e
G —

. .

. .
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100% throughput for uniform traffic

Four (trivial) algorithms for a uniform traffic matrix:

1. Cycle through permutations in “round-robin” (i.e. previous slide).
2. Each time, randomly pick one of the permutations in (1).

3. Each time, pick a permutation uniformly and at random from all
possible N! permutations.

4. Wait until all VOQs are non-empty, then pick any algorithm above.
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Quick recap so far



An input-queued (1Q) switch
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Properties of an IQ switch

« All buffering takes place at the input.
 Input queues only need to be able to write
packets at rate R (instead of N x R).

Consequences

» Can build a switch N times faster.

HOL Blocking: a packet can be held up by
packet ahead destined to a different output.
Hence an 1Q switch is not “work
conserving”. It can unnecessarily idle.

May not achieve “100% throughput”.
Average delay is not minimized.
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Delay, d

Head of Line Blocking

|Q switch with uniform traffic matrix, 1 < 1

Observation: HOL Blocking means we lose
42% of the switching capacity

Poisson arrivals:
1< 2—1/2=58%

Karol ‘87

OQ Switch

0.5 0.58
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Poisson arrivals:

E(d) =%
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2—4

)

1-41
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100% throughput easy for uniform traffic

Four (trivial) algorithms for a uniform traffic matrix:

1.
2.
3.

Cycle through permutations in “round-robin”.
Each time, randomly pick one of the permutations in (1).

Each time, pick a permutation uniformly and at random from all
possible N! permutations.

Wait until all VOQs are non-empty, then pick any algorithm above.
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Q: So why did the authors need Parallel
Iterative Matching (PIM)?

Because in practice, arrivals are not uniform.

(If we know the matrix, we can still create a cycle of permutations to
serve every VOQ at the rate in the traffic matrix).

In practice we don’t know the traffic matrix.
Hence, PIM....



Parallel Iterative Matching

uar selection uar selection
1 1 10 1 1o o1
lteration 1: 2 2 24 2 24 \0 2
3 3 3 3 3;\\\\;3
4 4 44 4 4o 4
Request Grant Accept | Q: Are we done?

| Q: Is a larger match possible?

To. 1 1o 1 1 1
Iteration 2: 2 . - 'z A / 2 20 2
—y 3e 3 3 3




PIM Properties

1. Inputs and outputs make decisions independently and in parallel.
2. Guaranteed to find a maximal match in at most A iterations.
3. Typically completes in much fewer than N iterations.

Q: How large is a maximal match compared to a maximum match?

A maximal match is guaranteed to be at least half the cardinality
(size) of a maximum match.



Note log scale

Parallel lterative Matching
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Parallel Iterative Matching

LOQrr T A L LA AL AL
OE ) PIM with |
iy Mne iteration
LLI i
+1 i
Oy i
: f
!
T L0 ! ! !
8 ro# ;f
e /
£ ;i F
g AN
= ‘i “F\((\ o
" QO
& f 3 x ’8\'““
: TE
< 4 a7 :
\‘!‘f f“fﬁjé\o-
4 P\
5O
Simulation
16-port switch
0. L-prrrrrrreprrerrrrreprrerrrreprrerr——eeeeeed - Uniform traffic matrix
70 20 %0 Lo0

50 60
Offered Load (%)



Parallel Iterative Matching

Average Latency (Cells)
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How many PIM iterations should be run?



Parallel Iterative Matching

Number of iterations

Consider the n requests to output j

Requesting K
inputs receiving {
o

no other grants

n-k
Requesting
inputs receiving
other grants

k
—, all requests to j are resolved

wp.q 1

k .
1 -—, at most k remain unresolved
n

k k
E [Num unresolved requests] <—0 +(1 - —)- k
n n
n 1
< —, because (1 - a)- as Z, when a <1
Therefore, 3/4 of all requests are resolved each iteration.

4
(It follows that the number of iterations =< log,N + g)



Known methods for non-uniform traffic

1. 100% throughput is now known to be theoretically possible with:
- 1Q switch, with VOQs, and

- An arbiter to pick a permutation to maximize
the total matching weight (e.g. weight is VOQ occupancy)

34



Choose matching M
that maximizes ¥; iy Ly j

bipartite
request bipartite
graph match

crossbar

“maximum WEIGHT match”

Observation: give preference to longer VOQs
Leads to 100% throughput for any traffic matrix.
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Known methods for non-uniform traffic

2. It is practically possible with:

- 1Q switch, VOQs, all running twice as fast (i.e. choose and
transfer two cells per cell time)

- An arbiter running a maximal match (e.g. PIM)

Intuition: Because maximal match is at least half the size of a
maximum match, running twice as fast compensates for it.
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Known methods for non-uniform traffic

3. 2 switch stages with a fixed schedule of permutations!
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A 2-stage Load-balancing switch

Fixed cycle of permutations

Fixed cycle of permutations
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Intuition: If uniform traffic is so easy, can | make
non-uniform traffic “sufficiently uniform”?
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A 2-stage Load-balancing switch

N2VOQs
R : . R/N . fr—— ‘ R/N R -
R ; R,
3 R R R .3

Deceptively simple but WOrks for non-uniform traffic!
N R Q: Where is the switching taking place?
Q: Can packets be mis-sequenced?
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End.



