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Congestion Avoidance and Control - Discussion

● What are the key problems being solved in the paper?

● Key techniques in the paper.

● If instead of Additive increment, one did a multiplicative increase, 
would that work; why or why not?
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● Why is it important to get the value of RTO right - in the ballpark?

● What was a core assumption for congestion avoidance to work?

Congestion Avoidance and Control - Discussion



Why care about Congestion 
Control in Practice
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Congestion Control delivers excellent end-to-end network performance, 
isolation and efficiency through coupled host / NIC / switch capabilities for 

sharing network capacity.



Network Bandwidth Sharing at Google

Swift[1], TCP-BBR.Swift 
and BBR[2] 

Per-flow congestion control.

Static Limits BW configuration based on CPU cores, 
storage etc. 

[1] Swift: Delay is Simple  and Effective for  Congestion Control in the Datacenter, SIGCOMM 2020
[2] BBR: Congestion-based Congestion Control, ACM Queue, 2016
[3] BwE: Flexible, Hierarchical Bandwidth Allocation for WAN Distributed Computing, SIGCOMM 2015.
[4] B4: Experience with a Globally-Deployed Software Defined WAN, SIGCOMM 2013.

BwE [3], B4 TE [4] Centralized Control of Flow Aggregates 
over WAN.
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https://conferences.sigcomm.org/sigcomm/2015/pdf/papers/p537.pdf
https://queue.acm.org/detail.cfm?id=3022184
http://conferences.sigcomm.org/sigcomm/2015/pdf/papers/p1.pdf
http://dl.acm.org/citation.cfm?id=2486019
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Congestion Control: A Fundamental Network 
Building Block

Loss/RTT/ECN/
Bandwidth 

Measurement 
Engine

ACKs

CWND and Rate 
Computation 

Engine

CWND and 
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Enforcement

Paced
Packets

Increase / Decrease based on 
congestion detection signals

CWND / 
Rate

Time

Data
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Congestion detection signals

End-to-end

Packet loss
Round-trip time
Bandwidth

Explicit Feedback from Network
Explicit Congestion Notification 
Queue lengths and differentials
Sojourn time
Available bandwidth
Link utilization

Loss TCP New Reno, Cubic

Delay Vegas, Fast, BBR*, Swift

DCTCP, XCP, RCP, DCQCN, HPCC

* Also uses ECN, and max. throughput
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Algorithms and Heuristics

Starting behavior

Slow Start Exponential 
growth

Steady State Behavior

Additive Increase and 
Multiplicative Decrease 
(AIMD)

Adaptive increase and 
decrease

Faster Convergence

Hyper-active Increment

Cubic increase
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Explicit Congestion Notification (ECN)

● Switches set “Congestion Experienced” bit on packets if the queue grows too 
large as per the IETF ECN standard.

● Switches inform receiver, which in turn can inform sender of congestion marks.

TCP
sender

TCP
receiver

Congestion 
Experienced (CE)

ECN Echo in TCP header

Explicit Congestion Notification (ECN)

http://www.ietf.org/rfc/rfc3168.txt
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Datacenter TCP (DCTCP)

● Datacenter DCTCP (SIGCOMM 2010) uses ECN marks.

● Switches mark CE bit in IP header if queue > 65KB.

● Receivers reflect marks to senders (via TCP flags).

● Sender slows down according to proportion of marked packets each RTT.

α ← (1 − g) × α + g × F

cwnd ← cwnd × (1 − α/2).

α ← Fraction of packets 
that are marked

F ← Fraction of packets 
marked in the last window 

of data

http://dl.acm.org/citation.cfm?id=1851192
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Reactive and Proactive Schemes

Reactive Schemes
Act on feedback gathered from acknowledgements.

Proactive Schemes
Proactively schedules network transfers.
Centralized schemes arbitrate globally for network transfers.
Switch based schemes explicitly allocate resources. 
Receivers explicitly schedule transfers.
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Metrics in evaluating Congestion Control

Network Centric

Queue delay
Link throughput/utilization
Buffer overflows
Stability

Application / User centric

Response time of application’s data unit 
(flow-completion time, RPC completion time)
Quality of experience for Video traffic
Round-trip delay
End-to-end goodput
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Congestion Control Challenges in Datacenter

Congestion control 
requirements

Transfers must complete quickly, low 
tail latency.

Deliver high bandwidth (>> Gbps) 
and low latency (<< ms).

Efficient use of CPU.

Challenges

Bursty traffic because of 
applications and NIC 
offloading.

Small buffers.

Very small round-trip delays.

Incast traffic patterns with 
many (>1K) flows sharing 
very short paths.

Kernel-bypassed transports.

Opportunities

Hardware assistance.

Less worries of 
interoperability with 
legacy.

Explicit network feedback 
is easier to deploy.

Centralized control is 
possible.
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Congestion Control Challenges in Wide Area Networks

High signal variability.

Small buffers and large round-trip times.

Mismatch in transport design and underlying link layer channel, e.g., channel 
bandwidth is time-varying and unpredictable, deep per-user buffers, burst 
scheduling algorithms

Deployed congestion control algorithms are heterogeneous and unknown to senders.

Coexistence with legacy algorithms that are sensitive to packet loss.

Explicit feedback from network is rare, and difficult to deploy widely.



Swift: Delay is Simple and Effective 
for Congestion Control in the 
Datacenter
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What is Swift?

Swift is a delay based  congestion-control for Datacenters that achieves 
low-latency, high-utilization, near-zero loss implemented completely at 
end-hosts supporting diverse workloads like large-scale incast across 
latency-sensitive, byte and IOPS-intensive applications working seamlessly 
in heterogeneous datacenters with minimal switch support

Swift achieves ~50𝜇s tail latency for short-flows while maintaining near 
100% utilization even at 100Gbps line-rate
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Why we built a new Datacenter congestion-control at Google?

New applications w/ 
low-latency 
requirements

100μs access latency at 100k+ 
IOPS for Flash

NVM needs 10μs latency at 1M+ 
IOPS

Large-scale incast for 
partition-aggregate workloads

IOPS intensive applications, 
e.g., BigQuery shuffle 
operation

New stacks and new 
sources of congestion

New networking stacks such as 
PonyExpress[1] exhibit different 
congestion behavior which is 
no longer limited to the fabric

E.g., endpoint congestion 
becomes key for a 
non-interrupt based stack like 
PonyExpress 

17 [1] Snap: a Microkernel Approach to Host Networking, SOSP 2019

Increasing line-rates and 
robustness to 
heterogeneity

100Gbps networking and 
beyond

Fast reaction to congestion - 
queue build-up happens very 
quickly



Design
Key aspects of Swift’s design
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Swift in the context of PonyExpress



End-to-end delay decomposition of a Packet and its ACK

Swift maintains two congestion-windows (in #packets) - one based on fabric-delay and 
one based on endpoint-delay with their respective cwnd 

Effective cwnd is the minimum of the two

Swift Design
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Swift Design contd.

Use of HW and SW 
timestamps

To provide accurate delay 
measurements and separate them 
into fabric and host components

Simple AIMD based 
on a target-delay

Seamless transition 
b/w cwnd and rate

Swift allows cwnd to fall 
below 1 to handle large-scale 
incast

cwnd < 1 implemented via 
pacing using Timing Wheel, 
pacing off when cwnd > 1
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if delay < Target
increase cwnd

   (Additively)
else

decrease cwnd 
   (Multiplicatively)
   



Swift Design contd.

Scaling of target-delay

Topology-based scaling (TBS) 
for RTT-fairness

Flow-based scaling (FBS for 
fairness)

Loss recovery and ACKing policy

Minimal investment in loss-recovery - 
losses are rare: SACK and RTO.

Coexistence via QoS

Multiple CC in shared 
deployments, e.g., WAN 
traffic, Cloud traffic etc.

Subset of QoS queues 
reserved for Swift

22
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Average Queue Buildup with Randomized flow arrival and 
perfect rate control



Key Takeaways
From experiences with deployment at Google



Production Results - Loss and Latency

Loss rate vs. Port 
Utilization at Edge

GCN is a DCTCP[2]-style 
congestion-control deployed at Google 
and serves as the comparison point for 
the production results presented here.

Latency vs. Cluster 
Throughput

Takeaways

Swift keeps loss-rates very small even 
at the 99.9th-p and at near line-rate 
utilization

Loss-rate improvement doesn’t come 
at the cost of throughput; Swift 
sustains same cluster throughput as 
GCN 

We find that Swift is able to maintain 
the average fabric round-trip around 
the configured target delay

25
[2] Datacenter TCP (DCTCP), SIGCOMM 2010



Production Results - Isolation in shared deployments

Isolation via QoS Takeaways
Use of QoS works extremely well in 
providing isolation from non-Swift traffic in 
shared infrastructure

Swift loss rate on the lowest priority QoS is 
lower than GCN loss rate on strict priority 
QoS
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Proprietary + Confidential

Swift controls the delay as per the target-delay
Achieved RTT vs. Target Delay (line-rate: 50Gbps) Takeaways

Load-Latency Curve (line-rate: 100Gbps)

Swift is able to precisely control the 
achieved average RTT to be around the 
target 

A very small target delay value hurts 
utilization

The load-latency curve exhibits the variation 
in achieved RTT as the per- machine offered 
load is increased
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Production Results - Endpoint congestion

Takeaways

Endpoint congestion (measured by 
endpoint delays such as in the NIC Queue) 
is also important to address

NIC delays can account for a significant 
portion of RTT,  especially for IOPS intensive 
applications 
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Separation of Fabric vs. Endpoint Congestion

Throughput-intensive cluster IOPS-intensive cluster



Proprietary + Confidential
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Key conclusions from our experiences with Swift deployment

Delay works really well

Use of delay as a multi-bit 
congestion signal has proven 
effective for excellent 
performance

Use of absolute target delay is 
performant and robust

And simplicity that has helped 
greatly with operational issues.

Fabric and Host 
congestion are both 
important to respond to

Both forms matter across a 
range of workloads.

Delay is decomposable to 
separate concerns 

Important for end-to-end 
performance for applications

Wide range of 
workloads

Including large scale incast

Pace packets when there are 
more flows than the 
bandwidth-delay
product (BDP)

Use a congestion window at 
higher flow rates for CPU 
efficiency



Future Directions for Research



Proprietary + Confidential

What is the optimal increase function for e2e 

Congestion Control? 

Decrease is easier as it’s performed based on an explicit signal such as RTT or ECN.

Optimal CC that works straight out of the box from NICs



Proprietary + Confidential

How can we tell if Congestion Control is work conserving 

at Scale?



Proprietary + Confidential

A systematic way to handling bottlenecks and congestion 

at hosts



Proprietary + Confidential

Congestion Control that can run in Hypervisors w/o direct 

access to Guest transports



Proprietary + Confidential

Achieving ultra low latencies (<10us) for short transfers 
that’s close to propagation delay in the presence of 

bandwidth intensive transfers



Proprietary + Confidential

Is Congestion Control at the packet layer fundamentally 
better than one at higher level entities such as messages 

(RMAs, RPCs)?



Proprietary + Confidential

A robust well-performing and simple congestion control for 

the WAN that’s tolerant of noisy signals and works for small or 

large  buffers



Questions and Discussion
nanditad@google.com


