
Congestion Control in the Real World

Lecture @Stanford, 4/11/22

Nandita Dukkipati
nanditad@google.com

2

Congestion Avoidance and Control - Discussion

● What are the key problems being solved in the paper?

● Key techniques in the paper.

● If instead of Additive increment, one did a multiplicative increase,
would that work; why or why not?

3

● Why is it important to get the value of RTO right - in the ballpark?

● What was a core assumption for congestion avoidance to work?

Congestion Avoidance and Control - Discussion

Why care about Congestion
Control in Practice

4

Congestion Control delivers excellent end-to-end network performance,
isolation and efficiency through coupled host / NIC / switch capabilities for

sharing network capacity.

Network Bandwidth Sharing at Google

Swift[1], TCP-BBR.Swift
and BBR[2]

Per-flow congestion control.

Static Limits BW configuration based on CPU cores,
storage etc.

[1] Swift: Delay is Simple and Effective for Congestion Control in the Datacenter, SIGCOMM 2020
[2] BBR: Congestion-based Congestion Control, ACM Queue, 2016
[3] BwE: Flexible, Hierarchical Bandwidth Allocation for WAN Distributed Computing, SIGCOMM 2015.
[4] B4: Experience with a Globally-Deployed Software Defined WAN, SIGCOMM 2013.

BwE [3], B4 TE [4] Centralized Control of Flow Aggregates
over WAN.

5

https://conferences.sigcomm.org/sigcomm/2015/pdf/papers/p537.pdf
https://queue.acm.org/detail.cfm?id=3022184
http://conferences.sigcomm.org/sigcomm/2015/pdf/papers/p1.pdf
http://dl.acm.org/citation.cfm?id=2486019

6

Congestion Control: A Fundamental Network
Building Block

Loss/RTT/ECN/
Bandwidth

Measurement
Engine

ACKs

CWND and Rate
Computation

Engine

CWND and
Rate

Enforcement

Paced
Packets

Increase / Decrease based on
congestion detection signals

CWND /
Rate

Time

Data

7

Congestion detection signals

End-to-end

Packet loss
Round-trip time
Bandwidth

Explicit Feedback from Network
Explicit Congestion Notification
Queue lengths and differentials
Sojourn time
Available bandwidth
Link utilization

Loss TCP New Reno, Cubic

Delay Vegas, Fast, BBR*, Swift

DCTCP, XCP, RCP, DCQCN, HPCC

* Also uses ECN, and max. throughput

8

Algorithms and Heuristics

Starting behavior

Slow Start Exponential
growth

Steady State Behavior

Additive Increase and
Multiplicative Decrease
(AIMD)

Adaptive increase and
decrease

Faster Convergence

Hyper-active Increment

Cubic increase

9

Explicit Congestion Notification (ECN)

● Switches set “Congestion Experienced” bit on packets if the queue grows too
large as per the IETF ECN standard.

● Switches inform receiver, which in turn can inform sender of congestion marks.

TCP
sender

TCP
receiver

Congestion
Experienced (CE)

ECN Echo in TCP header

Explicit Congestion Notification (ECN)

http://www.ietf.org/rfc/rfc3168.txt

10

Datacenter TCP (DCTCP)

● Datacenter DCTCP (SIGCOMM 2010) uses ECN marks.

● Switches mark CE bit in IP header if queue > 65KB.

● Receivers reflect marks to senders (via TCP flags).

● Sender slows down according to proportion of marked packets each RTT.

α ← (1 − g) × α + g × F

cwnd ← cwnd × (1 − α/2).

α ← Fraction of packets
that are marked

F ← Fraction of packets
marked in the last window

of data

http://dl.acm.org/citation.cfm?id=1851192

11

Reactive and Proactive Schemes

Reactive Schemes
Act on feedback gathered from acknowledgements.

Proactive Schemes
Proactively schedules network transfers.
Centralized schemes arbitrate globally for network transfers.
Switch based schemes explicitly allocate resources.
Receivers explicitly schedule transfers.

12

Metrics in evaluating Congestion Control

Network Centric

Queue delay
Link throughput/utilization
Buffer overflows
Stability

Application / User centric

Response time of application’s data unit
(flow-completion time, RPC completion time)
Quality of experience for Video traffic
Round-trip delay
End-to-end goodput

13

Congestion Control Challenges in Datacenter

Congestion control
requirements

Transfers must complete quickly, low
tail latency.

Deliver high bandwidth (>> Gbps)
and low latency (<< ms).

Efficient use of CPU.

Challenges

Bursty traffic because of
applications and NIC
offloading.

Small buffers.

Very small round-trip delays.

Incast traffic patterns with
many (>1K) flows sharing
very short paths.

Kernel-bypassed transports.

Opportunities

Hardware assistance.

Less worries of
interoperability with
legacy.

Explicit network feedback
is easier to deploy.

Centralized control is
possible.

14

Congestion Control Challenges in Wide Area Networks

High signal variability.

Small buffers and large round-trip times.

Mismatch in transport design and underlying link layer channel, e.g., channel
bandwidth is time-varying and unpredictable, deep per-user buffers, burst
scheduling algorithms

Deployed congestion control algorithms are heterogeneous and unknown to senders.

Coexistence with legacy algorithms that are sensitive to packet loss.

Explicit feedback from network is rare, and difficult to deploy widely.

Swift: Delay is Simple and Effective
for Congestion Control in the
Datacenter

15

What is Swift?

Swift is a delay based congestion-control for Datacenters that achieves
low-latency, high-utilization, near-zero loss implemented completely at
end-hosts supporting diverse workloads like large-scale incast across
latency-sensitive, byte and IOPS-intensive applications working seamlessly
in heterogeneous datacenters with minimal switch support

Swift achieves ~50𝜇s tail latency for short-flows while maintaining near
100% utilization even at 100Gbps line-rate

16

Why we built a new Datacenter congestion-control at Google?

New applications w/
low-latency
requirements

100μs access latency at 100k+
IOPS for Flash

NVM needs 10μs latency at 1M+
IOPS

Large-scale incast for
partition-aggregate workloads

IOPS intensive applications,
e.g., BigQuery shuffle
operation

New stacks and new
sources of congestion

New networking stacks such as
PonyExpress[1] exhibit different
congestion behavior which is
no longer limited to the fabric

E.g., endpoint congestion
becomes key for a
non-interrupt based stack like
PonyExpress

17 [1] Snap: a Microkernel Approach to Host Networking, SOSP 2019

Increasing line-rates and
robustness to
heterogeneity

100Gbps networking and
beyond

Fast reaction to congestion -
queue build-up happens very
quickly

Design
Key aspects of Swift’s design

18

Swift in the context of PonyExpress

End-to-end delay decomposition of a Packet and its ACK

Swift maintains two congestion-windows (in #packets) - one based on fabric-delay and
one based on endpoint-delay with their respective cwnd

Effective cwnd is the minimum of the two

Swift Design

20

5. Remote NIC Tx Delay

3. Remote NIC Rx Delay

Traffic Roundabout

2. Forward Fabric Delay

Lo
ca

l E
nd

po
in

t

Tx

Rem
ote Endpoint

Tx

Rx

Switch Queue

Switch Queue

6. Reverse Fabric Delay

1. Local NIC Tx Delay

7. Local NIC Rx Delay

Rx

4. Rem
ote Processing Delay

Swift Design contd.

Use of HW and SW
timestamps

To provide accurate delay
measurements and separate them
into fabric and host components

Simple AIMD based
on a target-delay

Seamless transition
b/w cwnd and rate

Swift allows cwnd to fall
below 1 to handle large-scale
incast

cwnd < 1 implemented via
pacing using Timing Wheel,
pacing off when cwnd > 1

21

if delay < Target
increase cwnd

 (Additively)
else

decrease cwnd
 (Multiplicatively)

Swift Design contd.

Scaling of target-delay

Topology-based scaling (TBS)
for RTT-fairness

Flow-based scaling (FBS for
fairness)

Loss recovery and ACKing policy

Minimal investment in loss-recovery -
losses are rare: SACK and RTO.

Coexistence via QoS

Multiple CC in shared
deployments, e.g., WAN
traffic, Cloud traffic etc.

Subset of QoS queues
reserved for Swift

22

23

Average Queue Buildup with Randomized flow arrival and
perfect rate control

Key Takeaways
From experiences with deployment at Google

Production Results - Loss and Latency

Loss rate vs. Port
Utilization at Edge

GCN is a DCTCP[2]-style
congestion-control deployed at Google
and serves as the comparison point for
the production results presented here.

Latency vs. Cluster
Throughput

Takeaways

Swift keeps loss-rates very small even
at the 99.9th-p and at near line-rate
utilization

Loss-rate improvement doesn’t come
at the cost of throughput; Swift
sustains same cluster throughput as
GCN

We find that Swift is able to maintain
the average fabric round-trip around
the configured target delay

25
[2] Datacenter TCP (DCTCP), SIGCOMM 2010

Production Results - Isolation in shared deployments

Isolation via QoS Takeaways
Use of QoS works extremely well in
providing isolation from non-Swift traffic in
shared infrastructure

Swift loss rate on the lowest priority QoS is
lower than GCN loss rate on strict priority
QoS

26

Proprietary + Confidential

Swift controls the delay as per the target-delay
Achieved RTT vs. Target Delay (line-rate: 50Gbps) Takeaways

Load-Latency Curve (line-rate: 100Gbps)

Swift is able to precisely control the
achieved average RTT to be around the
target

A very small target delay value hurts
utilization

The load-latency curve exhibits the variation
in achieved RTT as the per- machine offered
load is increased

27

Production Results - Endpoint congestion

Takeaways

Endpoint congestion (measured by
endpoint delays such as in the NIC Queue)
is also important to address

NIC delays can account for a significant
portion of RTT, especially for IOPS intensive
applications

28

Separation of Fabric vs. Endpoint Congestion

Throughput-intensive cluster IOPS-intensive cluster

Proprietary + Confidential

29

Key conclusions from our experiences with Swift deployment

Delay works really well

Use of delay as a multi-bit
congestion signal has proven
effective for excellent
performance

Use of absolute target delay is
performant and robust

And simplicity that has helped
greatly with operational issues.

Fabric and Host
congestion are both
important to respond to

Both forms matter across a
range of workloads.

Delay is decomposable to
separate concerns

Important for end-to-end
performance for applications

Wide range of
workloads

Including large scale incast

Pace packets when there are
more flows than the
bandwidth-delay
product (BDP)

Use a congestion window at
higher flow rates for CPU
efficiency

Future Directions for Research

Proprietary + Confidential

What is the optimal increase function for e2e

Congestion Control?

Decrease is easier as it’s performed based on an explicit signal such as RTT or ECN.

Optimal CC that works straight out of the box from NICs

Proprietary + Confidential

How can we tell if Congestion Control is work conserving

at Scale?

Proprietary + Confidential

A systematic way to handling bottlenecks and congestion

at hosts

Proprietary + Confidential

Congestion Control that can run in Hypervisors w/o direct

access to Guest transports

Proprietary + Confidential

Achieving ultra low latencies (<10us) for short transfers
that’s close to propagation delay in the presence of

bandwidth intensive transfers

Proprietary + Confidential

Is Congestion Control at the packet layer fundamentally
better than one at higher level entities such as messages

(RMAs, RPCs)?

Proprietary + Confidential

A robust well-performing and simple congestion control for

the WAN that’s tolerant of noisy signals and works for small or

large buffers

Questions and Discussion
nanditad@google.com

