
Lecture 8: Programmable Forwarding
Sundararajan Renganathan

CS244
Advanced Topics in Networking

Spring 2022

“Forwarding Metamorphosis: Fast Programmable Match-Action
Processing in Hardware for SDN”

[Pat Bosshart et al. 2013]
“NetCache: Balancing Key-Value Stores with Fast In-Network Caching”

[X. Jin, et al. 2017]

Context

2

Pat Bosshart
At the time: TI (Texas Instruments)
Architect of first LISP CPU and 1GHz DSP

George Varghese
At the time: MSR
Today: Professor at UCLA

+ Others from TI

+ Others from Stanford

At the time the paper was written (2012)…
§ Fastest switch ASICs were fixed function, around 1Tb/s
§ Lots of interest in “disaggregated” switches for large data-centers

3

Fixed Parser
Fixed Header Processing Pipeline

Switch with fixed function pipeline

L2
 T

ab
le

IP
v4

 T
ab

le

IP
v6

 T
ab

le

AC
L

Ta
bl

e

L2
 H

dr
Ac

tio
ns

IP
 H

dr
Ac

tio
ns

v6
 H

dr
Ac

tio
ns

AC
L

Ac
tio

ns

“Programmable switches run 10x slower,
consume more power and cost more.”

Conventional wisdom in 2010

Packet Forwarding Speeds

0.1

1

10

100

1000

10000

100000

1990 1995 2000 2005 2010 2015 2020

Switch Chip
CPU

Gb/s
(per chip)

6.4Tb/s

Packet Forwarding Speeds

0.1

1

10

100

1000

10000

100000

1990 1995 2000 2005 2010 2015 2020

Switch Chip
CPU80x

Gb/s
(per chip)

6.4Tb/s

Domain Specific Processors

CPU

Computers

Java
Compiler

GPU

Graphics

OpenCL
Compiler

DSP

Signal
Processing

Matlab
Compiler

Machine
Learning

?

TPU

TensorFlow

Compiler

Networking

?

Language

Compiler>>

Domain Specific Processors

CPU

Computers

Java
Compiler

GPU

Graphics

OpenCL
Compiler

DSP

Signal
Processing

Matlab
Compiler

Machine
Learning

?

TPU

TensorFlow

Compiler >>

Networking

P4

Compiler

PISA
aka “RMT”

Network systems tend to be designed
“bottom-up”

Switch OS

Fixed-function switch

Driver

“This is how I process packets
…”

What if they could be programmed “top-down”?

Programmable Switch

Driver

Switch OS“This is precisely how you must
process packets”

The RMT design [2013]

12

Programmable
parsers Match+Action

Pipeline

Packet Buffers Match+Action
Pipeline

Programmable
De-parsers

13

PISA: Protocol Independent Switch Architecture

Match+Action
Memory ALU

Pr
og

ra
m

m
ab

le
Pa

rs
er

Programmer declares which
headers are recognized

Programmer declares what
tables are needed and how packets are processed

All stages are identical. A “compiler target”.

Pr
og

ra
m

m
ab

le
Pa

rs
er

PISA: Protocol Independent Switch Architecture

PISA: Protocol Independent Switch Architecture
Pr

og
ra

m
m

ab
le

Pa
rs

er Ethernet
MAC

Address
Table

MPLS
Tag

Table IPv4
Address TableACL

Rules

PISA: Protocol Independent Switch Architecture
Pr

og
ra

m
m

ab
le

Pa
rs

er Ethernet
MAC

Address
Table

MPLS
Tag

Table
IPv4

Address Table

IPv6
Address Table

ACL
Rules

VXLAN

P4 program example: Parsing Headers
Ethernet

IPv4
ACLMyEncapMy Encap

IPv6

header_type ethernet_t {
fields {

dstAddr : 48;
srcAddr : 48;
etherType : 16;

}
}

header_type my_encap_t {
fields {

foo : 12;
bar : 8;
baz : 4;
qux : 4;
next_protocol : 4;

}
}

Ethernet My
Encap

IPv4 IPv6

TCP

parser parse_ethernet {
extract(ethernet);
return select(latest.etherType) {
0x8100 : parse_my_encap;
0x800 : parse_ipv4;
0x86DD : parse_ipv6;

}
}

P4 program example
Ethernet

IPv4
ACLMyEncapMy Encap

IPv6

table ipv4_lpm
{

reads {
ipv4.dstAddr : lpm;

}
actions {

set_next_hop;
drop;

}
}

action set_next_hop(nhop_ipv4_addr, port)
{

modify_field(metadata.nhop_ipv4_addr, nhop_ipv4_addr);
modify_field(standard_metadata.egress_port, port);
add_to_field(ipv4.ttl, -1);

}

control ingress
{

apply(l2);
apply(my_encap);
if (valid(ipv4) {

apply(ipv4_lpm);
} else {

apply(ipv6_lpm);
}
apply(acl);

}

How programmability is used

Reducing complexity1

Compiler

Reducing complexity

Programmable Switch

Driver

Switch OSswitch.p4

IPv4 and IPv6 routing
- Unicast Routing

- Routed Ports & SVI
- VRF

- Unicast RPF
- Strict and Loose

- Multicast
- PIM-SM/DM & PIM-Bidir

Ethernet switching
- VLAN Flooding
- MAC Learning & Aging
- STP state
- VLAN Translation

Load balancing
- LAG
- ECMP & WCMP
- Resilient Hashing
- Flowlet Switching

Fast Failover
– LAG & ECMP

Tunneling
- IPv4 and IPv6 Routing & Switching

- IP-in-IP (6in4, 4in4)
- VXLAN, NVGRE, GENEVE & GRE
- Segment Routing, ILA

MPLS
- LER and LSR
- IPv4/v6 routing (L3VPN)
- L2 switching (EoMPLS, VPLS)
- MPLS over UDP/GRE

ACL
- MAC ACL, IPv4/v6 ACL, RACL
- QoS ACL, System ACL, PBR
- Port Range lookups in ACLs

QOS
- QoS Classification & marking
- Drop profiles/WRED
- RoCE v2 & FCoE
- CoPP (Control plane policing)

NAT and L4 Load Balancing

Security Features
- Storm Control, IP Source Guard

Monitoring & Telemetry
- Ingress Mirroring and Egress Mirroring
- Negative Mirroring
- Sflow
- INT

Counters
- Route Table Entry Counters
- VLAN/Bridge Domain Counters
- Port/Interface Counters

Protocol Offload
- BFD, OAM

Multi-chip Fabric Support
- Forwarding, QOS

Compiler

Driver

Switch OS

Reducing complexity
My

switch.p4

Programmable Switch

How programmability is used

Adding new features2

Protocol complexity 20 years ago

Ethernet

IPv4 IPX

ethtype ethtype

Datacenter switch today
switch.p4

Example new features

1. New encapsulations and tunnels

2. New ways to tag packets for special treatment

3. New approaches to routing: e.g. source routing in DCs

4. New approaches to congestion control

5. New ways to process packets: e.g. ticker-symbols

Example new features
1. Layer-4 Load Balancer1

§ Replace 100 servers or 10 dedicated boxes with one programmable
switch

§ Track and maintain mapping for 5-10 million http flows

2. Fast stateless firewall
§ Add/delete and track 100s of thousands of new connections per second

3. Cache for Key-value store2

§ Memcache in-network cache for 100 servers
§ 1-2 billion operations per second

[1] “SilkRoad: Making Stateful Layer-4 Load Balancing Fast and Cheap Using Switching ASICs.” Rui Miao et al. Sigcomm 2017.
[2] “NetCache: Balancing Key-Value Stores with Fast In-Network Caching”, Xin Jin et al. SOSP 2017

How programmability is used

Network telemetry3

“Which path did my packet take?”1
“I visited Switch 1 @780ns,

Switch 9 @1.3µs, Switch 12 @2.4µs”

“Which rules did my packet follow?”2

“In Switch 1, I followed rules 75 and 250.
In Switch 9, I followed rules 3 and 80. ”

Rule
1

2

3

…

75 192.168.0/24

…

“How long did my packet queue at each switch?”3 “Delay: 100ns, 200ns, 19740ns”

Time

Queue

“Who did my packet share the queue with?”4

“How long did my packet queue at each switch?”3 “Delay: 100ns, 200ns, 19740ns”

Time

Queue

“Who did my packet share the queue with?”4

Aggressor flow!

These seem like pretty important questions

“Which path did my packet take?”
“Which rules did my packet follow?”
“How long did it queue at each switch?”
“Who did it share the queues with?”

A programmable device can potentially answer all four questions.
At line rate.

1
2
3
4

Log, Analyze
Replay

INT: In-band Network Telemetry

Add: SwitchID, Arrival Time,
Queue Delay, Matched Rules, …

Original Packet

Visualize

Example using INT

[nanoseconds]

Today’s programmable switching throughputs

NetCache: Balancing Key-Value Stores
with Fast In-Network Caching

Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé
JK Lee, Nate Foster, Chang Kim, and Ion Stoica

Goal: Fast and Cost-efficient Rack-scale Key-value Storage

Ø Store, retrieve, manage key-value objects
§ Critical building block for large-scale cloud services

§ Need to meet aggressive latency and throughput objectives efficiently

q Target workloads
Ø Small objects
Ø Read intensive
Ø Highly skewed and dynamic key popularity

…

The problem

KV Servers

Load

ToR

gets and puts

KV servers under a highly-skewed & rapidly-changing workload

The problem
KV servers under a highly-skewed & rapidly-changing workload

KV Servers

Load

ToR

gets and puts

Q: How can you achieve high throughput and bound tail latency?

The problem

uQiforP zipf-0.9 zipf-0.95 zipf-0.99
WorNloDd DistributioQ

0.0

0.5

1.0

1.5

2.0
Th

ro
ug

hp
ut

 (B
Q

P
S

)

1oCDche 1etCDche(servers) 1etCDche(cDche)

It’s very hard to achieve high throughput and
low tail latency at the same time

What if we had a very fast front-end server?

KV Servers

Load

ToR

gets and puts

Front-end
Cache Handle hot keys directly

Q: How big and fast the front-end cache should be?

For a front-end cache to be effective …
Ø How big should it be?

Ø Keep O(N*logN) hot keys where N is the number of KV servers
Ø Theory proves that such a front-end cache bounds the variance of

KV server utilization irrespective of the total number of keys

Ø How fast should it be?
Ø At least as large as the aggregated throughput of all KV servers

(N*C)

Why is this relevant now?

storage layer

flash/disk

each: O(100) KQPS

total: O(10) MQPS

Cache needs to provide the aggregate throughput of the storage layer

in-memory

each: O(10) MQPS

total: O(1) BQPS

cache layer

in-memory

O(10) MQPS

cache

O(1) BQPS

cache

Why is this relevant now?

storage layer

flash/disk

each: O(100) KQPS

total: O(10) MQPS

Cache needs to provide the aggregate throughput of the storage layer

in-memory

each: O(10) MQPS

total: O(1) BQPS

cache layer

in-memory

O(10) MQPS

cache

O(1) BQPS

cache

Small on-chip memory?
Only cache O(N log N) small items

PISA
(real-time I/O

machine)

Match + Action

Programmable Parser Programmable Match-Action Pipeline

Memory ALU

… … ……

Ø Programmable Parser
Ø Parse custom key-value fields in the packet

Ø Programmable Mach-Action Pipeline
Ø Read and update key-value data
Ø Provide query statistics for cache updates

PISA: Protocol Independent Switch Architecture

Data plane (ASIC)

Control plane (CPU)

Network
Functions

Network
Management

Run-time API

Match + Action

Programmable Parser Programmable Match-Action Pipeline

Memory ALU

… … ……

P
C
Ie

A conventional switch built with PISA

A front-end KV cache built with PISA

KV ServersFront-end KV Cache

Clients

Ø Data plane
Ø Key-value store to serve queries for cached keys
Ø Query statistics to enable efficient cache updates

Ø Control plane
Ø Insert hot items into the cache and evict less popular items
Ø Manage memory allocation for on-chip key-value store

Key-Value
Cache

Query
Statistics

Cache
Management

Run-time API

P
C
Ie

Line-rate query handling in the data plane

Cache

Client

1

2 Server

Read Query
(cache hit)

Hit StatsUpdate

Client Server

1

4 3

2
Write Query Invalidate Cache Stats

Client

1

4
Server

3

2Read Query
(cache miss)

CacheMiss StatsUpdate

q How to identify application-level packet fields ?

q How to store and serve variable-length data ?

q How to efficiently keep the cache up-to-date ?

Key-value caching in network ASIC at line rate

Packet format

Ø Application-layer protocol; compatible with existing L2-L4 layers

Ø Only the front-end cache needs to parse NetCache fields

ETH IP TCP/UDP OP KEY VALUE

Existing Protocols NetCache Protocol

read, write,
delete, etc.

reserved
port #L2/L3 Routing

SEQ

q How to identify application-level packet fields ?

q How to store and serve variable-length data ?

q How to efficiently keep the cache up-to-date ?

Key-value caching in network ASIC at line rate

action process_array(idx):

if pkt.op == read:

pkt.value array[idx]

elif pkt.op == cache_update:

array[idx] pkt.value

0 1 2 3

Register Array

Key-value store using register array in network ASIC

Key-value store using register array in network ASIC

Match pkt.key == A pkt.key == B

Action process_array(0) process_array(1)

action process_array(idx):

if pkt.op == read:

pkt.value array[idx]

elif pkt.op == cache_update:

array[idx] pkt.value

0 1 2 3

A B

Register Array

pkt.value: BA

Variable-length key-value store in network ASIC?

Match pkt.key == A pkt.key == B

Action process_array(0) process_array(1)

0 1 2 3

A B

Register Array

pkt.value: BA

Key Challenges:
q No loop or string due to strict timing requirements

q Need to minimize hardware resources consumption
§ Number of table entries
§ Size of action data for each entry in table
§ Size of intermediate metadata across tables

Combine outputs from multiple arrays
Match pkt.key == A

Action bitmap = 111
index = 0

Match bitmap[0] == 1

Action process_array_0 (index)

0 1 2 3

A0 Register Array 0

Lookup Table

Value Table 0

Register Array 1

Register Array 2

Match bitmap[1] == 1

Action process_array_1 (index)

Match bitmap[2] == 1

Action process_array_2 (index)

Value Table 1

Value Table 2

A1

A2

pkt.value: A0 A1 A2

Bitmap indicates arrays that store the key’s value

Index indicates slots in the arrays to get the value

Minimal hardware resource overhead

Match pkt.key == A pkt.key == B

Action bitmap = 111
index = 0

bitmap = 110
index = 1

Match bitmap[0] == 1

Action process_array_0 (index)

0 1 2 3

A0 B0 Register Array 0

Lookup Table

Value Table 0

Register Array 1

Register Array 2

Match bitmap[1] == 1

Action process_array_1 (index)

Match bitmap[2] == 1

Action process_array_2 (index)

Value Table 1

Value Table 2

A1 B1

A2

Combine outputs from multiple arrays

pkt.value: A0 A1 A2 B0 B1

Match pkt.key == A pkt.key == B pkt.key == C

Action bitmap = 111
index = 0

bitmap = 110
index = 1

bitmap = 010
index = 2

Match bitmap[0] == 1

Action process_array_0 (index)

0 1 2 3

A0 B0 Register Array 0

Lookup Table

Value Table 0

Register Array 1

Register Array 2

Match bitmap[1] == 1

Action process_array_1 (index)

Match bitmap[2] == 1

Action process_array_2 (index)

Value Table 1

Value Table 2

A1 B1 C0

A2

Combine outputs from multiple arrays

pkt.value: A0 A1 A2 B0 B1 C0

Match pkt.key == A pkt.key == B pkt.key == C pkt.key == D

Action bitmap = 111
index = 0

bitmap = 110
index = 1

bitmap = 010
index = 2

bitmap = 101
index = 2

Match bitmap[0] == 1

Action process_array_0 (index)

0 1 2 3

A0 B0 D0 Register Array 0

Lookup Table

Value Table 0

Register Array 1

Register Array 2

Match bitmap[1] == 1

Action process_array_1 (index)

Match bitmap[2] == 1

Action process_array_2 (index)

Value Table 1

Value Table 2

A1 B1 C0

A2 D1

Combine outputs from multiple arrays

pkt.value: A0 A1 A2 B0 B1 C0 D0 D1

q How to identify application-level packet fields ?

q How to store and serve variable-length data ?

q How to efficiently keep the cache up-to-date ?

Key-value caching in network ASIC at line rate

Cache insertion and eviction
q Challenge: Keeping the hottest O(N logN) items in the cache

q Goal: React quickly and effectively to workload changes with minimal updates

Key-Value
Cache

Query
Statistics

Cache Management

P
C

Ie

1

2

3

4

1 Data plane reports hot keys

2 Control plane compares loads of
new hot and sampled cached keys

3 Control plane fetches values for
keys to be inserted to the cache

4 Control plane inserts and evicts keys

KV ServersFront-end KV
Cache

Query statistics in the data plane

Ø Cached key: per-key counter array

Ø Uncached key
Ø Count-Min sketch: report new hot keys
Ø Bloom filter: remove duplicated hot key reports

Per-key counters for each cached item

Count-Min sketch

pkt.key

not cached

cached

hot

Bloom filter

report

Cache
Lookup

The “boring life” of a NetCache system

test the switch performance at full traffic load. The value
process is executed each time when the packet passes an
egress port. To avoid packet size keeps increasing for read
queries, we remove the value field at the last egress stage
for all intermediate ports. The servers can still verify the
values as they are kept in the two ports connected to them.

• Server rotation for static workloads (§6.3). We use one
machine as a client, and the other as a storage server. We
install the hot items in the switch cache as for a full stor-
age rack and have the client send traffic according to a Zipf
distribution. For each experiment, the storage server takes
one key-value partition and runs as one node in the rack.
By rotating the storage server for all 128 partitions (i.e.,
performing the experiment for 128 times), we aggregate
the results to obtain the result for the entire rack. Such
result aggregation is justified by (i) the shared-nothing
architecture of key-value stores and (ii) the microbench-
mark that demonstrates the switch is not the bottleneck.

To find the maximum effective system throughput, we
first find the bottleneck partition and use that server in the
first iteration. The client generates queries destined to this
particular partition, and adjusts its sending rate to control
the packet loss rate between 0.5% to 1%. This sending rate
gives the saturated throughput of the bottleneck partition.
We obtain the traffic load for the full system based on this
sending rate, and use this load to generate per-partition
query load for remaining partitions. Since the remaining
partitions are not the bottleneck partition, they should be
able to fully serve the load. We sum up the throughputs of
all partitions to obtain the aggregate system throughput.

• Server emulation for dynamic workloads (§6.4). Server
rotation is not suitable for evaluating dynamic workloads.
This is because we would like to measure the transient be-
havior of the system, i.e., how the system performance
fluctuates during cache updates, rather than the system
performance at the stable state. To do this, we emulate
128 storage servers on one server by using 128 queues.
Each queue processes queries for one key-value partition
and drops queries if the received queries exceed its pro-
cessing rate. To evaluate the real-time system throughput,
the client tracks the packet loss rate, and adjusts its send-
ing rate to keep the loss rate between 0.5% to 1%. The
aggregate throughput is scaled down by a factor of 128.
Such emulation is reasonable because in these experiments
we are more interested in the relative performance fluctu-
ations when NetCache reacts to workload changes, rather
than the absolute performance numbers.

6.2 Switch Microbenchmark
We first show switch microbenchmark results using snake

test (as described in §6.1). We demonstrate that NetCache is
able to run on programmable switches at line rate.

Throughput vs. value size. We populate the switch cache
with 64K items and vary the value size. Two servers and

0 32 64 96 128
9alue 6ize (Byte)

0.0

0.5

1.0

1.5

2.0

2.5

Th
ro

ug
hS

ut
 (B

4
3

6
)

(a) Throughput vs. value size. (b) Throughput vs. cache size.

Figure 9: Switch microbenchmark (read and update).
one switch are organized to a snake structure. The switch
is configured to provide 62 100Gbps ports, and two 40Gbps
ports to connect servers. We let the two servers send cache
read and update queries to each other and measure the maxi-
mum throughput. Figure 9(a) shows the switch provides 2.24
BQPS throughput for value size up to 128 bytes. This is bot-
tlenecked by the maximum sending rate of the servers (35
MQPS). The Barefoot Tofino switch is able to achieve more
than 4 BQPS. The throughput is not affected by the value size
or the read/update ratio. This is because the switch ASIC is
designed to process packets with strict timing requirements.
As long as our P4 program is complied to fit the hardware
resources, the data plane can process packets at line rate.

Our current prototype supports value size up to 128 bytes.
Bigger values can be supported by using more stages or using
packet mirroring for a second round of process (§4.4.2).

Throughput vs. cache size. We use 128 bytes as the value
size and change the cache size. Other settings are the same
as the previous experiment. Similarly, Figure 9(b) shows that
the throughput keeps at 2.24 BQPS and is not affected by the
cache size. Since our current implementation allocates 8 MB
memory for the cache, the cache size cannot be larger than
64K for 128-byte values. We note that caching 64K items is
sufficient for balancing a key-value storage rack.

6.3 System Performance
We now present the system performance of a NetCache

key-value storage rack that contains one switch and 128 stor-
age servers using server rotation (as described in §6.1).

Throughput. Figure 10(a) shows the system throughput un-
der different skewness parameters with read-only queries and
10,000 items in the cache. We compare NetCache with No-
Cache which does not have the switch cache. In addition,
we also show the the portions of the NetCache throughput
provided by the cache and the storage servers respectively.
NoCache performs poorly when the workload is skewed.
Specifically, with Zipf 0.95 (0.99) distribution, the NoCache
throughput drops down to only 22.5% (15.6%), compared to
the throughput under the uniform workload. By introducing
only a small cache, NetCache effectively reduces the load
imbalances and thus improves the throughput. Overall, Net-
Cache improves the throughput by 3.6⇥, 6.5⇥, and 10⇥ over
NoCache, under Zipf 0.9, 0.95 and 0.99, respectively.

10

test the switch performance at full traffic load. The value
process is executed each time when the packet passes an
egress port. To avoid packet size keeps increasing for read
queries, we remove the value field at the last egress stage
for all intermediate ports. The servers can still verify the
values as they are kept in the two ports connected to them.

• Server rotation for static workloads (§6.3). We use one
machine as a client, and the other as a storage server. We
install the hot items in the switch cache as for a full stor-
age rack and have the client send traffic according to a Zipf
distribution. For each experiment, the storage server takes
one key-value partition and runs as one node in the rack.
By rotating the storage server for all 128 partitions (i.e.,
performing the experiment for 128 times), we aggregate
the results to obtain the result for the entire rack. Such
result aggregation is justified by (i) the shared-nothing
architecture of key-value stores and (ii) the microbench-
mark that demonstrates the switch is not the bottleneck.

To find the maximum effective system throughput, we
first find the bottleneck partition and use that server in the
first iteration. The client generates queries destined to this
particular partition, and adjusts its sending rate to control
the packet loss rate between 0.5% to 1%. This sending rate
gives the saturated throughput of the bottleneck partition.
We obtain the traffic load for the full system based on this
sending rate, and use this load to generate per-partition
query load for remaining partitions. Since the remaining
partitions are not the bottleneck partition, they should be
able to fully serve the load. We sum up the throughputs of
all partitions to obtain the aggregate system throughput.

• Server emulation for dynamic workloads (§6.4). Server
rotation is not suitable for evaluating dynamic workloads.
This is because we would like to measure the transient be-
havior of the system, i.e., how the system performance
fluctuates during cache updates, rather than the system
performance at the stable state. To do this, we emulate
128 storage servers on one server by using 128 queues.
Each queue processes queries for one key-value partition
and drops queries if the received queries exceed its pro-
cessing rate. To evaluate the real-time system throughput,
the client tracks the packet loss rate, and adjusts its send-
ing rate to keep the loss rate between 0.5% to 1%. The
aggregate throughput is scaled down by a factor of 128.
Such emulation is reasonable because in these experiments
we are more interested in the relative performance fluctu-
ations when NetCache reacts to workload changes, rather
than the absolute performance numbers.

6.2 Switch Microbenchmark
We first show switch microbenchmark results using snake

test (as described in §6.1). We demonstrate that NetCache is
able to run on programmable switches at line rate.

Throughput vs. value size. We populate the switch cache
with 64K items and vary the value size. Two servers and

(a) Throughput vs. value size.

0 16. 32. 48. 64.
Cache Size

0.0

0.5

1.0

1.5

2.0

2.5

Th
ro

ug
hp

ut
 (B

Q
3

S
)

(b) Throughput vs. cache size.

Figure 9: Switch microbenchmark (read and update).
one switch are organized to a snake structure. The switch
is configured to provide 62 100Gbps ports, and two 40Gbps
ports to connect servers. We let the two servers send cache
read and update queries to each other and measure the maxi-
mum throughput. Figure 9(a) shows the switch provides 2.24
BQPS throughput for value size up to 128 bytes. This is bot-
tlenecked by the maximum sending rate of the servers (35
MQPS). The Barefoot Tofino switch is able to achieve more
than 4 BQPS. The throughput is not affected by the value size
or the read/update ratio. This is because the switch ASIC is
designed to process packets with strict timing requirements.
As long as our P4 program is complied to fit the hardware
resources, the data plane can process packets at line rate.

Our current prototype supports value size up to 128 bytes.
Bigger values can be supported by using more stages or using
packet mirroring for a second round of process (§4.4.2).

Throughput vs. cache size. We use 128 bytes as the value
size and change the cache size. Other settings are the same
as the previous experiment. Similarly, Figure 9(b) shows that
the throughput keeps at 2.24 BQPS and is not affected by the
cache size. Since our current implementation allocates 8 MB
memory for the cache, the cache size cannot be larger than
64K for 128-byte values. We note that caching 64K items is
sufficient for balancing a key-value storage rack.

6.3 System Performance
We now present the system performance of a NetCache

key-value storage rack that contains one switch and 128 stor-
age servers using server rotation (as described in §6.1).

Throughput. Figure 10(a) shows the system throughput un-
der different skewness parameters with read-only queries and
10,000 items in the cache. We compare NetCache with No-
Cache which does not have the switch cache. In addition,
we also show the the portions of the NetCache throughput
provided by the cache and the storage servers respectively.
NoCache performs poorly when the workload is skewed.
Specifically, with Zipf 0.95 (0.99) distribution, the NoCache
throughput drops down to only 22.5% (15.6%), compared to
the throughput under the uniform workload. By introducing
only a small cache, NetCache effectively reduces the load
imbalances and thus improves the throughput. Overall, Net-
Cache improves the throughput by 3.6⇥, 6.5⇥, and 10⇥ over
NoCache, under Zipf 0.9, 0.95 and 0.99, respectively.

10

Single switch benchmark
Not a typo! J

It is indeed BQPS.

And it’s “not so boring” benefits

3-10x throughput improvements

uQiforP zipf-0.9 zipf-0.95 zipf-0.99
WorNloDd DistributioQ

0.0

0.5

1.0

1.5

2.0

Th
ro

ug
hp

ut
 (B

Q
P

S
)

1oCDche 1etCDche(servers) 1etCDche(cDche)

1 switch + 128 storage servers

End.

