
Cloud-scale
Virtual Networking

Parveen Patel
(Google)

Cloud Networking from Outside

● VPC - Virtual Private Cloud
○ Typically refers to "virtual private network"

● Regional subnetworks within the VPC
○ Global connectivity

● VMs within the subnetworks

● "Private" IPs within GCP
○ "Public" IPs to reach internet

Key Features

● Network Virtualization
● Traffic shaping & steering (BwE, Espresso)
● Inbound & outbound DoS detection and throttling
● Network ACLs
● Packet Encryption
● NAT
● Stateful Firewall
● Load balancing (L3/L7, internal/external)
● Routing; connectivity to VPN, Interconnect
● VPC Peering
● …

Proprietary + Confidential

ToR 10.1.8.0/25 ToR 10.2.9.0/25

Cluster xx
10.1.0.0/16

Cluster yy
10.2.0.0/16

host 10.1.8.3

host 10.2.9.7

router

ra
ck

rack

router

10.2.0.0/16
10.3.0.0/16
10.4.0.0/15
10.6.0.0/16
10.7.0.0/16
10.8.0.0/16
10.9.0.0/16
0.0.0.0/0

yy
zz
aa
bb
cc
dd
ee
PR

Routing in Physical Networks

Cluster xx
10.1.0.0/16

Cluster yy
10.2.0.0/16

vmA

vmX

vmY

vmB

vmC

vmD

vmE

vmZ

vmV

virtual
switch

vmF

vmM

vmP

vmN

vmL

vmQ

virtual
switch

virtual
switch

virtual
switch

virtual
switch

Host 10.1.1.3

Host 10.1.2.4

Host 10.1.2.5

Host 10.2.1.7

Host 10.1.1.9

Virtual IP
192.168.0.2
192.168.0.3
192.168.0.4
192.168.0.5
192.168.0.6
192.168.0.7
10.240.0.3
10.240.0.6
10.240.0.7

vnid
1
1
1
1
1
1
2
2
2

Host:key
local:17
10.1.1.3:1
10.1.2.4:1
10.1.2.4:2
10.1.2.4:3
10.2.1.7:1
10.1.1.3:2
10.1.1.3:2
10.1.1.

Routing in Virtual Networks at Google

Google Andromeda

Built on the Snap framework: https://research.google/pubs/pub48630/

https://research.google/pubs/pub48630/

Andromeda Architecture
VM ControllerVM ControllerVM Controller

OpenFlow Front End

VM Host

VM

Virtual
switch

VM

VM VM

VM ControllerVM ControllerVM Controller VM ControllerVM ControllerVM Controller

OpenFlow Front End

VM Host

VM

Virtual
switch

VM

VM VM

VM Host

VM

Virtual
switch

VM

VM VM

RPC

Extended OpenFlow

Match Actions Match Actions Match Actions

3. Install flows from
the new VM to
other VMs in the
network.

2. Install flows from
other VMs to the
new VM.

1. New VM added

Programming Time for Large Networks
Setup:
❖ VMs are placed on 10,000 hosts
❖ 30 VM Controller shards

Programming time is O(n×H)
 n = number of VMs
 H = number of hosts

Quadratic scaling leads to provisioning
challenges
❖ Control plane CPU and memory
❖ Dataplane memory

Scaling Goals

Global connectivity

Large virtual networks
(100k+ VMs)

Rapid provisioning
Enable on-demand workloads

vmA

vmX

vmY

vmB

vmD

virtual
switch

vmC

virtual
switch

Host 10.1.1.3

Host 10.1.2.4

Scaling with Hoverboards

HoverboardHoverboardHoverboard

vmE

vmZ

vmV

virtual
switch

Host 10.1.2.5

low priority route

vmA

vmX

vmY

vmB

vmD

virtual
switch

vmC

virtual
switch

Host 10.1.1.3

Host 10.1.2.4

Hoverboard Offloading

HoverboardHoverboardHoverboard

vmE

vmZ

vmV

virtual
switch

Host 10.1.2.5

vmX → vmZ offload flow

low priority route

vmA

vmX

vmY

vmB

vmD

virtual
switch

vmC

virtual
switch

Host 10.1.1.3

Host 10.1.2.4

Hoverboard Offloading

HoverboardHoverboardHoverboard

vmE

vmZ

vmV

virtual
switch

Host 10.1.2.5

low priority route

vmX → vmZ offload flow

VM Controller

OpenFlow Front Endstats

flow programming

Programming Time with Hoverboard

Programming linear with # VMs only

On-host Components

Andromeda Architecture
VM ControllerVM ControllerVM Controller

OpenFlow Front End

VM Host

VM

Virtual
switch

VM

VM VM

VM ControllerVM ControllerVM Controller VM ControllerVM ControllerVM Controller

OpenFlow Front End

RPC

Extended OpenFlow

Match Actions

VM Host

VM

Virtual
switch

VM

VM VM

VM Host

VM

Virtual
switch

VM

VM VM

Match Actions Match Actions

Deep Dive: On-Host Stack (Snap, host agent, vswitchd)

VM Host
Host AgentvswitchdGuest

VM
Guest VM

Coprocessor

Snap Fast Path
Match Action

Flow cache

miss insert

Host OS Kernel

NIC

shared
memory
ring

Extended OpenFlow

OpenFlow Front End

Brains of routing and
VNF policy

Manages
on-host VMs
netw.

Busy polls NIC and
guest queues,
forwards VM packets

Routes packet,
applies per-flow Fast
Path actions (encap,
decap, etc)

Packet Processor
Virtual NIC for the VM

Deep Dive: On-Host Stack (Snap, host agent, vswitchd)

VM Host
Host AgentvswitchdGuest

VM
Guest VM

Coprocessor

Andromeda Fast Path

miss insert

Host OS Kernel

NIC

Extended OpenFlow

OpenFlow Front End High performance traffic
processed end-to-end
on Fast Path

Flow Table performs
routing, encap/decap,
etc.

Packet

Packet

Packet

Match Action

Flow cache

Pull packet from NIC
Parse, TcpDump, ...

Flow Lookup
Route, decap, ...

Deliver packet to VM
Copy, update rings, ...

Deep Dive: On-Host Stack (Snap, host agent, vswitchd)

VM Host
Host AgentvswitchdGuest

VM
Guest VM

Coprocessor

Andromeda Fast Path

miss insert

Host OS Kernel

NIC

Extended OpenFlow

OpenFlow Front End

Packet

Packet

Packet

Match Action

Flow cache

Packet

Coprocessors are
per-VM threads CPU
attributed to VM
container

Coprocessors execute
CPU-intensive packet
ops such as LPM/NAT

Decouples feature
growth from Fast Path
speed

Velocity through Transparent
Maintenance

Andromeda Hitless Upgrade

Physical NIC

State XferOld Dataplane New Dataplane

Guest VM

● Enables weekly Snap upgrades
● 200ms median network blackout (1s @ P99)

1. Bring up new Dataplane, create packet buffers, NIC queues
2. Transfer state (firewall, VM state, etc)
3. Old Andromeda stops engines -- Begin blackout
4. New Andromeda starts engines -- End blackout
5. Tear down old Andromeda

Offloads and performance

Snap/Andromeda 2.0 (cir. 2016)

● VMM / hypervisor
○ Implements all aspects of guest network interaction

● Snap/Andromeda is a userspace C++ binary
○ "Spins" on 1 host core
○ Owns a couple OS-bypass NIC queues
○ Implements packet virtualization

⇒ 16Gbps on a 2x10G NIC

Guest VM

Snap
Software NIC

Mellanox CX3 NIC

VMM Payload copy
Descr validation

Flow lookup (tx)
Ratelimiting
Encap/decap
Segmentation
Steering
Encryption

Guest

Host

Network

Snap/Andromeda 2.1 (cir. 2019)

● Bypass VMM for dataplane(*)
○ VMM still implements control aspects of "virtual device"
○ (*) fallback to older mode on VM migration

● Snap slowly taking advantage of NIC offloads
○ HW RSS allows Snap to "scale up" to 2 (or more) host

cores
○ Rx Steering allows per-VM queues & major isolation win
○ Encryption offloaded

⇒ 32Gbps GA in Q2'19
⇒ 100G for GPUs w/ more Snap cores

Guest VM

Snap
Software NIC

NIC

VMM
Descr validation Flow
lookup (tx)
Ratelimiting
Encap/decap
Segmentation
Payload copy

Guest

Host

Network
Steering / RSS
Encryption

Snap/Andromeda 2.2 (Q1 2021)

● Main goal to offload payload copies to hardware
○ With VMM Networking team, built "gVNIC" guest driver
○ Tx DMA offloaded to Google NIC with gVNIC
○ Rx copies offloaded to Intel DMA Engines

● CPU usage more efficient
○ Now spin on only 1 host core
○ Dynamically scale out to 3 more hyperthreads as needed

⇒ 100G VM-to-VM Preview in Q1'21

● Ideally NIC would enable "full bypass" of Snap
○ In practice HW bugs and changing requirements prevent that NIC

gVNIC

Segmentation
Steering / RSS
Encryption
Payload DMA

Descr validation Flow
lookup (tx)
Ratelimiting
Encap/decap

Guest VM

Snap
Software NIC

VMM

Guest

Host

Network

Achieved TCP Throughput for GCP VMs

Highlighted in 2019 Blog
100G launch 2021 Post

C2/N2

https://cloud.google.com/blog/products/networking/google-cloud-networking-in-depth-how-andromeda-2-2-enables-high-throughput-vms
https://cloud.google.com/blog/products/networking/increasing-bandwidth-to-c2-and-n2-vms

Azure VFP

Source: https://www.usenix.org/sites/default/files/conference/protected-files/nsdi17_slides_firestone.pdf

https://www.usenix.org/sites/default/files/conference/protected-files/nsdi17_slides_firestone.pdf

Source: https://www.usenix.org/sites/default/files/conference/protected-files/nsdi17_slides_firestone.pdf

https://www.usenix.org/sites/default/files/conference/protected-files/nsdi17_slides_firestone.pdf

Source: https://www.usenix.org/sites/default/files/conference/protected-files/nsdi17_slides_firestone.pdf

https://www.usenix.org/sites/default/files/conference/protected-files/nsdi17_slides_firestone.pdf

On-host SDN datapaths work great, however

● Jitter due to software not acceptable
○ Some workloads demand predictable latency and bandwidth

● Do not support virtual networking for Baremetal machines
○ Bring your own hypervisor

● Expensive to tune software to each hardware
○ Heterogeneity of the host architecture - Intel, AMD, ARM

SmartNICs

Source: https://www.usenix.org/sites/default/files/conference/protected-files/nsdi18_slides_firestone.pdf

https://www.usenix.org/sites/default/files/conference/protected-files/nsdi18_slides_firestone.pdf

Source: https://www.usenix.org/sites/default/files/conference/protected-files/nsdi18_slides_firestone.pdf

https://www.usenix.org/sites/default/files/conference/protected-files/nsdi18_slides_firestone.pdf

Source:
https://www.usenix.org/sites/default/files/conference/protected-files/n
sdi18_slides_firestone.pdf

Source:
https://www.cockroachlabs.com/guides/2021-cloud-report/

2018 2021

https://www.usenix.org/sites/default/files/conference/protected-files/nsdi18_slides_firestone.pdf
https://www.usenix.org/sites/default/files/conference/protected-files/nsdi18_slides_firestone.pdf
https://www.cockroachlabs.com/guides/2021-cloud-report/

Common themes

- Control plane
- Hierarchical Controllers
- High feature velocity
- OpenFlow too inflexible for cloud scale

- Data plane
- Match-action tables
- Fastpath, slowpath separation
- Hitless upgrades
- Offloads

Future Directions

Challenges/opportunities

- Keeping up with speeds and feeds (Tbps networking)
- Performance versus programmability

- Dataplane portability across multiple SmartNICs
- Is there a flexible enough language to express offloads

- Container networking offloads
- Can we enable networking for a container in milliseconds

- High-performance networking workloads
- Multicast, RDMA, time synchronization etc

- Explosion of heterogeneity
- CPU arch, VM types, workload types, NIC types, GPUs, Baremetal, multi-NIC

- How to maintain reliability and velocity in this complex space?

Questions (½)
Andromeda

● Can you speak to the scheduling aspect of running 10s of thousands of VMs at scale in a data center? None of the papers so far have emphasized this as much as I would have expected, but
this seems to be a critical and nontrivial piece. – Borg.

● I believe this paper is something that came out of industry (Google). I think this allowed the authors to build Andromeda out over five years, and discuss experiences and challenges of the process
informed by a half-decade's work. I think it is less likely that academic research environments provides students with the ability to build out a project over such a long time, so I'm curious if the scope
of academic research in networking is generally smaller? Are different applications and problems tackled in academia than in industry so as to not necessitate 5 years of evolution, evaluation, and
deployment? – Focus on the primitives, Collaborate with the industry

● If the operators want to offload more functionalities to hardware, do they need to redesign/change the hardware? - Depends
● Programmable switches like RMT support SDN and virtualization *within the network*, but they do not solve the issues related to partitioning a host's networking resources to support this

virtualization. RMT and AccelNet solve different but related problems. What are the possible co-optimizations that could be leveraged to improve a cloud's virtualization system as a whole? - RMT
not flexible enough to support all use-cases.

● Do Google and Microsoft still use Andromeda and Accelnet, respectively, or has one of the systems won out as the clearly better option? - no single best solution, it’s a trade-off.
● As more archetypal flow types start to emerge (beyond basic attributes of “CPU-intensive” or “mostly idle” to more application-specific attributes), would the authors support the development of

additional types of data paths to specialize for each kind of flow, given that this was a key benefit of their approach? Is there a cost to subdividing these flows too much and specializing to the needs
of each kind of flow, or is that the future of network virtualization? - RDMA is a good example, RPC offloads?

● The Azure paper stresses how expensive it is to use physical cores for host networking. How does Andromeda deal with this issue as they seem to still use CPU cores for all packet processing? -
efficient software

● In lecture, it was mentioned recently that datacenter networks tend to be "brittle", where admins arrive at an optimal topology through a complex process that sometimes involves trial and error, and
any modification tends to be very complex, with high operational cost. Does the Andromeda architecture's Hoverboard mechanism help remedy this issue, at least partly? - Physical networks vs
virtual networks

● This question is more for my curiosity about the broader field of computer networking but -- a lot of papers we read this quarter seems to cover systems that are very easy to identify (e.g., Azure is
clearly Microsoft platform likely run by those in that institution). How does the anonymization process work for reviewing these papers? - industry track does not require anonymization

● Also, how generalizable are the findings that are aimed at designing large-scale networking systems (presumably, they do not get built all that often)? - benefits to adjacent spaces HW designers,
storage, ML

● How could we reasonably compare the efficacy of Andromeda and AccelNet?

Questions (2/2)
AccelNet

● Have offloading optimizations like those above been incorporated for cloud GPUs yet, to your knowledge? It feels like they haven't yet
given the relatively poor cost proposition of cloud GPUs vs. Cloud CPUs (for cloud infra vs. buying the infra directly).

● What are the limitations of using FPGA? Would it restrict the innovations on the functionalities that are offloaded to FPGA because the
hardware design is fixed?

● Just a bit confused on the Hoverboard architecture.
● It seems like the authors are completely indifferent to the problem of wasting CPU cycles on the networking stack. This was the main

motivation for the authors of the last paper. Why is there this difference in opinions between direct competitors? It seems like Microsoft got
it right, since FPGAs probably have strictly better performance and allow match-action pipelining, unless I am missing something. If I am
reading the experiment results right, AccelNet achieves ~5us ping between VMs whereas Andromeda achieves ~30.

● To what extent are cloud customers aware of these underlying network architecture differences among cloud vendors? To what extent
have these different “bets” on network architecture manifested in concrete shifts in the competitive landscape of these top companies?

●

